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Abstract

We consider a kernelized version of the ε-greedy strategy for contextual bandits.
More precisely, in a setting with finitely many arms, we consider that the mean re-
ward functions lie in a reproducing kernel Hilbert space (RKHS). We propose an online
weighted kernel ridge regression estimator for the reward functions. Under some con-
ditions on the exploration probability sequence, {εt}t, and choice of the regularization
parameter, {λt}t, we show that the proposed estimator is consistent. We also show
that for any choice of kernel and the corresponding RKHS, we achieve a sub-linear
regret rate depending on the intrinsic dimensionality of the RKHS. Furthermore, we
achieve the optimal regret rate of

√
T under a margin condition for finite-dimensional

RKHS.
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Keywords and phrases: Contextual bandits, reproducing kernel Hilbert space, covari-
ance operator, ε-greedy, cumulative regret, inverse probability weighting, kernel ridge re-
gression

1 Introduction
Sequential decision-making in real time is increasingly becoming important in various ap-
plications, such as clinical trials (Bather, 1985; Villar et al., 2015), news article recommen-
dation (Li et al., 2010) and mobile health (Nahum-Shani et al., 2017). In all such problems,
the decision-maker is faced with several alternatives, from which they have to make a se-
ries of choices (referred to as arms) sequentially, based on the information available at any
given time. In doing so, the decision-maker takes into account additional information or
covariates (characteristics) which help in making informed decisions. This framework is
popularly known as the contextual bandit problem (Langford and Zhang, 2007). In a treat-
ment allocation problem, this can be described as follows: given finitely many competing
treatments for a disease, the decision-maker (physician) chooses the treatment best suited
for individual patients as they arrive, and each allocated treatment results in a reward (out-
come). While doing so, the decision-maker takes into account the patient’s covariates and
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information available about previous patients with the same disease, with the eventual goal
of maximizing the total reward accumulated over a period of time. The technical challenge
in achieving this is two-fold: 1) learning the relationship between the covariates and opti-
mal arms, and, 2) balancing the exploration-exploitation trade-off, which arises due to the
sequential (or online) nature of the problem. In other words, in a sequential setup, at each
time point the physician has to effectively identify the best treatment (exploration) and
treat patients as effectively as possible during the trial (exploitation). Since there has been
a substantial number of advancements in the contextual bandit problem in recent years,
we refer the reader to Lattimore and Szepesvári (2020) for a detailed description of recent
developments in this area and Tewari and Murphy (2017) for a comprehensive survey of
both parametric and nonparametric methods in contextual bandits.
In this paper, we consider a kernelized contextual bandit framework, where the relationship
between the rewards and covariates for each arm is modeled by functions in a reproducing
kernel Hilbert space (RKHS), and study a popular heuristic in multi-armed bandit problems
known as the annealed ε-greedy strategy (Sutton and Barto, 2018). This strategy allocates
arms based on a randomized strategy to balance the exploration-exploitation trade-off, with
a careful reduction in exploration over time. For example, in a two-armed bandit, the ε-
greedy strategy chooses the current best-performing arm with probability 1− ε and makes
a random decision with a small probability ε. In the annealed version of the algorithm, ε is
a non-increasing function of time. This algorithm falls in the broad category of ‘algorithms
with myopic exploration’, which are easy to implement and could result in good empirical
performance in some situations with appropriate exploration probability choices (Bietti
et al., 2021; Mnih et al., 2015). In practice, they are often selected as the top choices due to
their simplicity. However, they have not been studied extensively in the literature. Recently,
Dann et al. (2022) studied the ε-greedy strategy in the more general reinforcement learning
setup and provided theoretical guarantees in terms of what they define as the myopic
exploration gap, which is a problem-dependent quantity. Using ε-greedy strategy, they
achieve the optimal regret rate of Õ(T 2/3) for contextual bandits, which matches the rate
we obtain for our algorithm when the RKHS is finite-dimensional. We also show that we can
get the same rate for an infinite-dimensional RKHS under the margin condition. Chen et al.
(2021) study the ε-greedy strategy for the linear bandit problem (parametric contextual
bandit with a linear regression framework) and establish the regret rate of Õ(

√
T ), which

our work recovers when the RKHS is finite-dimensional and under the margin condition.

1.1 Contributions

The main contribution of this work is in developing a theoretical understanding of kernelized
ε-greedy algorithm. More specifically:

• We propose an inverse probability weighted kernel ridge (IPWKR) regression type of
online estimator for the mean reward functions in Section 3.2, whose implementation
details are provided in Section 3.3. Such estimators have been studied in the context
of linear bandits for mitigating the problem of estimation bias in adaptively collected
data (Dimakopoulou et al., 2019). Using IPWKR estimator, we propose a kernel ε-
greedy algorithm for contextual bandits and provide regret bounds. We highlight here
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that the inverse probability weights appearing in IPWKR are deterministic known
quantities that involve user-determined exploration probabilities.

• In Section 4, we establish upper bounds on the estimation error (see Theorem 1) for the
proposed IPWKR estimator, which we specialize to the setting of finite-dimensional
RKHS in Theorem 2. These results hold for specific conditions on the exploration
probability sequence {εt}t and choices of the regularization parameter sequence {λt}t.
As a comparison, in the linear bandit framework, Chen et al. (2021) propose an online
weighted least squares (WLS) estimator similar to our proposed IPWKR estimator
but without regularization. In fact, when the kernel is linear, our proposed estimator
can be seen as a dualized representation of their online WLS estimator if λ = 0. In
Section 4 (Theorem 2 and Remark 1), we show that our consistency result is stronger
than (Chen et al., 2021, Proposition 4.1) in the sense that we achieve consistency
in estimation for large ranges of the exploration probabilities, {εt}t, i.e., for decay-
ing choices of {εt}t faster than those considered in Chen et al. (2021). Interestingly,
for these choices of {εt}t, we obtain the same convergence rate as in Chen et al.
(2021)—obtained for linear contextual bandits—even when the true regression func-
tions are non-linear, as long as the RKHS is finite-dimensional. Also, we highlight
that, compared to the existing literature (Valko et al., 2013; Zenati et al., 2022), in a
finite-dimensional setting, our analysis provides an explicit data-dependent choice for
regularization parameter, {λt}t, circumventing the need to tune it when implementing
the algorithm.

• In Theorem 3 of Section 5, we establish finite-time regret bounds for kernel ε-greedy
strategy for contextual bandits with finitely many arms when the mean reward func-
tions are assumed to be in an RKHS. These regret bounds are sub-linear for all choices
of bounded, positive definite, and symmetric kernels. Compared to the results in the
literature, this is a significant result since the Matérn kernel may have a linear regret
for some choices of the kernel parameters (Vakili et al., 2021b; Scarlett et al., 2017).
In fact, our finite-time regret bound matches the state-of-the-art upper bound for
ε-greedy strategy when the RKHS is finite-dimensional (Theorem 4), both with and
without the margin condition—the margin conditions ensures that there is sufficient
gap between the rewards for different arms—, which are Õ(T 1/2) and Õ(T 2/3), re-
spectively. When the RKHS is infinite-dimensional, the bounds are controlled by the
intrinsic dimensionality of the RKHS—in turn, controlled by the decay rate of the
eigenvalues of the covariance operator—and a source condition, which captures the
smoothness of the target.

• In contrast to the literature, the above results are obtained by only assuming the noise
variance to be finite, instead of the commonly assumed sub-Gaussian structure on the
noise in (1). Moreover, our analysis does not require any martingale concentration
results as in Chen et al. (2021) but uses Chebyshev’s inequality, however at the cost
of losing exponential concentration for polynomial concentration.
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1.2 Related research

Contextual bandits in a parametric framework, especially linear bandits have been exten-
sively studied in the bandit literature (Lattimore and Szepesvári, 2020). In a linear bandit
framework, every arm corresponds to a known, finite-dimensional context, and its expected
reward is assumed to be an unknown linear function of its context. Upper Confidence
Bound (UCB) and Thompson sampling strategies are the most commonly used bandit al-
gorithms. While the UCB uses the optimism in the face of uncertainty idea where the
exploration-exploitation trade-off is balanced by creating confidence sets on the unknown
reward functions, Thompson sampling is a randomized algorithm and a popular heuris-
tic based on Bayesian ideas. Both these types of algorithms are extremely popular, well-
studied, and enjoy tight regret guarantees (Dani et al., 2008; Li et al., 2010; Abbasi-Yadkori
et al., 2011; Agarwal et al., 2012). On the other hand, there are relatively fewer works on
ε-greedy strategy except for the epoch-greedy version of Langford and Zhang (2007) and
the mostly exploration-free algorithms based on Bastani et al. (2021), which have gained
a lot of popularity recently. In a nonparametric framework, ε-greedy strategies and mod-
ifications of the same have been studied by Yang and Zhu (2002); Qian and Yang (2016);
Arya and Yang (2020); Qian et al. (2023).
In the contextual bandit framework, there are also two types of setups that are consid-
ered in the literature: (a) continuous action space linear bandits: action (arm) space is
the same as the context (covariate) space (Abbasi-Yadkori et al., 2011; Dani et al., 2008;
Rusmevichientong and Tsitsiklis, 2010) and (b) finite action space linear bandits: finite ac-
tion (arm) set which is different from the context space (Li et al., 2010; Chen et al., 2021).
Under these two steps, infinite-dimensional extensions of contexts and/or arms have been
considered in both the frequentist and Bayesian perspectives. In the frequentist perspec-
tive, Valko et al. (2013) propose a KernelUCB algorithm for finite action space, which is
obtained by kernelizing the LinUCB and SupLinUCB algorithm of Li et al. (2010); Chu
et al. (2011), and Auer et al. (2002). They give a bound on the regret in terms of a data-
dependent quantity, the effective dimension, d̃. In the Bayesian perspective, Srinivas et al.
(2010) propose the Gaussian Process (GP)-UCB for the context-free stochastic bandit prob-
lem, which assumes that the reward function is drawn from a GP prior. Krause and Ong
(2011) generalize the GP-UCB algorithm by taking context information into account in the
decision-making process. Gopalan et al. (2014) study the stochastic multi-armed bandit
problem with continuous action space and propose an improved version of GP-UCB, which
they call IGP-UCB. In this work, they also propose a nonparametric version of Thompson
sampling, GP-Thompson sampling. The regret bounds in all of the Gaussian process ban-
dits line of work are in terms of the quantity, γt, which is the maximum information gain
at time t and depends on the choice of kernels that define the underlying RKHS containing
the reward functions. Moreover, Valko et al. (2013) show d̃ to be closely related to γt. Zhou
et al. (2020) propose a neural-net-based algorithm, called NeuralUCB, which uses a neural
network-based random feature mapping to construct an upper confidence bound (UCB).
More recently, Zenati et al. (2022) propose an efficient contextual UCB type algorithm for
computational efficiency. This algorithm relies on incremental Nyström approximations of
the joint kernel embedding of contexts and actions. Furthermore, Janz et al. (2020) and
Vakili et al. (2021a) provide improved regret bounds for GP bandits with Mátern kernels.
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Scarlett et al. (2017) and Cai and Scarlett (2021) provide lower bounds for the Gaussian
Process bandit optimization problem with squared exponential and Mátern kernel for the
contextual bandit problem with continuous action space. Another approach for kernelized
contextual bandits is related to experimental design and also aims at optimal pure explo-
ration in kernel bandits as has been studied by Camilleri et al. (2021) and Zhu et al. (2021).
A partial list of some of the other unrelated work in nonparametric contextual bandit prob-
lem includes Yang and Zhu (2002); Rigollet and Zeevi (2010); Magureanu et al. (2014); Hu
et al. (2022); Kleinberg et al. (2008); Slivkins (2014); Zhou et al. (2020).
While UCB and Thompson sampling algorithms for kernel contextual bandits have received
considerable attention in the recent past, to the best of our knowledge, the kernelized ver-
sion of the ε-greedy algorithm has not been studied previously. Our setup is similar to
the agnostic setup of Valko et al. (2013) for a contextual bandit framework with finitely
many arms, where we propose a kernelized version of the ε-greedy algorithm, which can be
seen as a nonparametric extension to the linear ε-greedy algorithm studied by Chen et al.
(2021). Our main contribution is a theoretical analysis of this kernelized ε-greedy approach
validated by some numerical results. The regret bounds we achieve are different from the
previous line of work, as our results do not depend on the data-dependent quantities such
as d̃ in Valko et al. (2013) or maximum information gain γt as in the GP-bandits line
of work. One can quantify this information gain for a specific kernel choice and find the
corresponding regret rate, see Scarlett et al. (2017). Therefore, for some choices of ker-
nel parameters for the Mátern kernel, it has been observed that one could obtain a linear
cumulative regret. On the other hand, our results depend on the intrinsic dimensionality
of the RKHS stemming from the assumption on the rate of the eigenvalue decay for the
covariance operator and the source condition for the space in which the true mean reward
functions are assumed to belong. As a result, we always obtain a sub-linear regret rate
irrespective of the kernel choice. Note that, the ε-greedy algorithm that we propose uses an
inverse probability-weighted online kernel ridge regression estimator. The inverse probabil-
ity weighting is reminiscent of the inverse propensity score weighted algorithms considered
in parametric frameworks to handle model misspecifications. These are known as balanced
bandit algorithms (Dimakopoulou et al., 2019) where each observation is divided by its
propensity score to correct for estimation bias. Dimakopoulou et al. (2019) propose the
balanced linear UCB and balanced Thompson sampling algorithms, establish their corre-
sponding regret rates, and assess empirical performances under model misspecifications.
Bogunovic and Krause (2021) study misspecified Gaussian Process bandit optimization,
but for continuous action space and they establish regret bounds in terms of the amount
of model misspecification. Chen et al. (2021) consider an ‘balanced’ (weighted) linear ε-
greedy strategy for handling model-misspecification with weighted least squares estimator.
Our work can be thought of as an extension to their work offering flexible and nonpara-
metric modeling for the relationship between the rewards and covariates, where we study
a kernelized version of the weighted linear ε-greedy algorithm.
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1.3 Organization

The rest of the paper is organized as follows. In Section 2.1, we define the notations used
in the rest of the paper. In Section 2.2, we introduce the setting of contextual bandits and
the online regression framework along with the definition of regret that is used to assess
the performance of the proposed algorithm. In Section 3, we present the kernel ε-greedy
strategy and the online kernel ridge-regression estimator studied in the following sections.
In Section 3.3, we provide an implementable version of the regression estimator that is
then employed in the proposed algorithm for empirical evaluation on synthetic data sets
in Section 6. We provide convergence rates for the estimation error in Section 4 for both
the infinite-dimensional and finite-dimensional RKHS settings. In Section 5, we present
the regret rates for both the infinite-dimensional and finite-dimensional RKHSs. Under an
additional assumption of the margin condition, improved regret bounds are presented for
the kernel ε-greedy algorithm in Section 5.1. Finally, all the proofs are provided in Section
8.

2 Background and problem setup
In this section, we introduce the notations followed by the problem setup of the sequential
decision-making framework of contextual bandits.

2.1 Notations

For a Hilbert Space H, 〈f, g〉H denotes the inner product of f, g ∈ H. We denote ‖ · ‖ or
‖ · ‖H to denote the corresponding norm in H. For h ∈ H, we use ‖h‖H =

√
〈h, h〉H to

denote the RKHS norm and ‖A‖∞ denotes the operator norm of a bounded operator A.
For operators A and B on H, A � B if and only if B−A is a positive definite operator. For
two real numbers x and y, x . y denotes that x is less than or equal to y up to a constant
factor, and ⊗ denotes the tensor product. The notation X ⊥ Y for two random variables,
X and Y , translates to X is independent of Y . Õ(·) denotes the order of approximation
(big-O) with some additional constant terms or terms of logarithmic order in time.

2.2 Problem Setup

In the contextual bandit problem with finitely many arms, the decision-maker has L ∈ N
competing choices of arms (or actions), say A := {1, . . . , L}, and have to choose arms se-
quentially over time, T = {1, . . . , T}, while using the contextual information available at
each time point, with T being the horizon. The contextual information can be thought of
as patient characteristics in a treatment allocation problem or user information in a recom-
mender system application. That is, at each time point t ∈ T , the decision-maker observes
contextual information (covariate), Xt ∈ Rd, from an underlying probability distribution
PX . Now, based on the available information until time t, the decision-maker then chooses
an arm at from a finite set of arms, A = {1, . . . , L}. Choosing (pulling) the arm at results
in a reward, yt ∈ R. The reward can be thought of as a quantitative outcome of assigning
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the arm at that time. For instance, it could mean the amount of benefit caused by assigning
a particular treatment to a patient at a given time.
In order to make informed decisions, the decision-maker must understand the relationship
between the rewards, {yt}Tt=1, and covariates, {Xt}Tt=1, for each arm in {1, . . . , L}. This rela-
tionship, usually stochastic in nature, can naturally be formulated as a regression problem.
In this work, we assume a nonparametric regression framework to model this relationship.
For each arm, i ∈ 1, . . . , L, we consider the following regression model:

yt = fi(Xt) + et, (1)

where the corresponding mean reward function fi ∈ H, with H being a reproducing Kernel
Hilbert space (RKHS) with reproducing kernel k : X×X → H, where X is a separable topo-
logical space. We assume that k is bounded and continuous, i.e., there exists a κ > 0, such
that supx∈X k(x, x) ≤ κ. Note that, by the reproducing property, fi(xt) = 〈fi, k(·, xt)〉H .
We make the following model assumptions:
(A1). Errors {et}t conditioned on an arm, i.e., {et|i}t are i.i.d. random variables with mean
0 and finite variance, σ2 := E(e2

t |i) <∞ for i = 1, . . . , L.
(A2). et ⊥ xt|at = i for all t = 1, . . . , T , and i = 1, . . . , L.
Note that the above distributional assumptions on the error are weaker than that made in
Chen et al. (2021), where the errors are assumed to be sub-Gaussian in addition to satisfying
the assumptions (A1) and (A2). Higher variability in the noise would lead to larger regret
bounds but would not change the rate of convergence for our proposed allocation strategy.
In Section 3.1, we propose an allocation strategy or an algorithm, B, for choosing the
next arm based on the sequence of past information on arms played, the covariates, and
the rewards obtained respectively. We will build online estimators for the mean reward
functions, fi, i = 1, . . . L, in Section 3.2. Then, we use these estimators to make optimal
decisions about arms in a sequential manner. Next, we formulate the notion of regret which
is a standard way to assess the performance of contextual bandit algorithms.
For covariate Xt = xt, let,

a∗t := arg maxa∈{1,...,L}fa(xt)

be the true best arm at time t and fa∗t (xt) the corresponding best function value. Then,
given the previously observed contexts, arms and rewards {(Xs, as, ys)}s=1,...,t−1 and the
current context Xt = xt, a standard goal in a contextual bandit problem is to choose an
action at in order to minimize the regret (see Definition 1) after T rounds. Let Ft =
σ〈a1, x1, y1, a2, x2, y2, . . . , at, xt, yt〉 denote the sigma-field generated by all information on
the covariates observed, arms pulled, and rewards obtained, respectively, until time t.
Definition 1. The instantaneous regret at time t is rt(B) := fa∗t (xt)− fat(xt), where a

∗
t is

the optimal arm at time t and at is the arm chosen by the bandit algorithm, B, at time t.
The cumulative regret RT (B) with horizon T is defined as:

RT (B) :=
T∑
t=1

(fa∗t (Xt)− fat(Xt)).
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Note that, the regret as defined above is a random quantity. Thus, we are interested in
finding an upper bound for regret in probability or in expectation. Since our method aims
at providing model flexibility by allowing us to discover a non-linear relationship between
expected rewards and covariates in an RKHS while trying to achieve contextual bandit
designs which are less prone to problems of bias, we also study the estimation error. Let
f̂a denote the proposed estimator for fa. The estimation error at time t is defined as
‖f̂at − fat‖H, where at is the arm chosen by the algorithm.

3 Kernel ε-greedy algorithm & IPKWR estimator
A simple policy to make sequential decisions in a contextual bandit framework is to be
greedy and choose the arm yielding the highest estimated reward for that covariate. How-
ever, this could lead to under-exploring some arms thus adversely affecting the performance
of the algorithm. A way around this is to use ε-greedy, a randomized version of the greedy
algorithm, which chooses the best arm with a large probability, i.e., (1 − ε) and explores
the remaining arms with a small probability, i.e., ε. In the following, we propose a ker-
nel ε-greedy algorithm that sequentially makes decisions about which arms to play for the
contextual bandits’ problem as described in Section 2.2.

3.1 Kernel ε-greedy algorithm

The proposed algorithm is a kernelized version of the popular ε-greedy algorithm for the
contextual bandit problem. Let {εt}t be a sequence of non-increasing probabilities, such
that εt → 0 as t → ∞. We denote ât to be the arm chosen by the proposed algorithm at
time t, as it depends on all previous data. Below, we describe the kernel ε-greedy strategy.

1. Initialize. Randomly select among the L arms up to time t0 for t = 1, 2, . . . , t0, such
that at least one reward per arm is obtained by time t0.

2. Estimate fi. At time t0, construct regression estimators for the L arms and denote
them by f̂i,t0 , i = 1, . . . , L.

3. Most promising arm at time t. For t = t0 + 1, observe covariate Xt = xt and
define:

At = arg maxi∈Af̂i,t−1(xt),

be the arm corresponding to the highest estimated value at the current covariate.
4. ε-greedy step. For a non-increasing probability sequence {εt}t, the arm pulled is

given by the following randomized scheme:

ât =

{
At with probability 1− εt
{1, . . . , L}\At with probability εt

L−1

. (2)

5. Update the estimators. Corresponding to the arm pulled at time t = t0 + 1,
observe reward Yt and update f̂ât,t. For the remaining arms, i 6= ât, f̂i,t = f̂i,t−1.
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6. Repeat steps 3-5 for t = t0 + 2 and so on up to time T .
Note that step 1 is an initialization step, where we randomly assign the L arms until time
t0, such that at least one reward is observed per arm by then. In step 2, we construct
regression estimators for each arm using the information gathered during the initialization
phase. Step 2 is presented as a generic step as we do not describe how the regression
estimator is constructed. We propose an inverse probability weighted kernel ridge regression
estimator in Section 3.2 and study the above algorithm for that specific estimator. In step
3, at time t = t0 + 1, we evaluate estimated mean reward functions at the covariate Xt for
each arm using the estimators constructed in step 2 and find the arm At that maximizes
the estimated mean reward. Note that, at this instant, we face the exploration-exploitation
dilemma. That is, we can either choose the most promising arm, At, based on the data
available so far or explore the remaining arms, a 6= At. We use the ε-greedy strategy in step
4 in order to balance this trade-off. This is a randomization scheme where we choose the
best promising arm At with a larger probability 1 − εt and explore the other arms a 6= At
with the remaining probabilities εt/(L− 1). We also assume that εt ≤ (L− 1)/L for t > t0,
so that 1 − εt ≥ εt/(L − 1). Note that, the exploration probabilities {εt}t are chosen to
be a decreasing sequence of probabilities converging to 0 as t→∞, hence exploiting more
with time. This is because as we accumulate more data, we gain more confidence in our
estimates for the mean rewards for each of the arms. Then, the same process is repeated
sequentially until we hit the time horizon T . In Section 3.2, we propose an online kernel
regression estimator, which we use in this algorithm. Note that, we have a ‘hat’ on the
proposed arm notation, ât, to highlight that the choice of the arm is data dependent.

3.2 Inverse probability weighted kernel ridge regression estimator

In this section, we propose an online version of the kernel ridge regression estimator for the
mean reward functions fi, i = 1, . . . , L. Recall, Ft = σ〈â1, x1, y1, â2, x2, y2, . . . , ât, xt, yt〉 de-
notes the sigma-field generated by all information on the covariates observed, arms pulled,
and rewards obtained, respectively, until time t. In order to build an online kernel ridge
regression estimator, we solve the following optimization problem with Tikhonov regular-
ization,

f̂i,t = arg minfi∈H
t∑

s=1

I{âs = i}(Ys − 〈fi, k(·, Xs)〉H)2 + λ‖fi‖2
H,

where λ > 0 is the regularization parameter. Using the same ideas as in kernel ridge
regression, it is easy to verify that

f̂i,t =

(
t∑

s=1

I{âs = i}k(·, Xs)⊗ k(·, Xs) + λI

)−1 t∑
s=1

I{âs = i}k(·, Xs)Ys, (3)

where I{âs = i} denotes the indicator function which is 1 if the arm chosen by the algorithm
at time s is i and is 0 otherwise. While the online kernel-ridge regression estimator in (3)
could be a potential candidate to consider, we work with a modified version of this estimator
which provides an unbiased estimator of the covariance operator, i.e., E[k(·, X)⊗ k(·, X)],
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as shown in Lemma 1. Specifically, we consider an online Inverse Probability Weighted
Kernel Ridge (IPWKR) regression estimator given by:

f̂i,t =

(
1

t

t∑
s=1

I{âs = i}
P (âs = i|Fs−1, Xs)

k(·, Xs)⊗ k(·, Xs) + λI

)−1
1

t

t∑
s=1

I{âs = i}
P (âs = i|Fs−1, Xs)

k(·, Xs)Ys,

(4)

for i = 1, . . . , L. Note that, in the above algorithm, the probability weights P (âs =
i|Fs−1, Xs) are known at time s. More specifically, since we know As and εs at time step
s, P (âs = As|Fs−1, Xs) = 1− εs and P (âs = a|Fs−1, Xs) = εs/(L− 1) for a 6= As, therefore
f̂i,s for i = 1, . . . , L and for s = 1, . . . , t are data-determined estimates and can be used
for estimation at the (t + 1)th time. Note that the definitions of the arm pulled (see (2))
and the online IPWKR estimator in (4) depend on each other. Since the data are not in-
dependent, the consistency of the estimator does not follow immediately from the classical
tools in kernel methods. Therefore, one of our contributions is in analyzing the estimation
error associated with the online IPWKR estimator, and establish its consistency and rate
of convergence.
From the proposed estimator, it is easy to see that a natural candidate for the estimator of
the covariance operator is:

Σ̂i,t =
1

t

t∑
s=1

I{âs = i}
P (âs = i|Fs−1, Xs)

k(·, Xs)⊗ k(·, Xs), (5)

which can be shown (see Lemma 1) to be an unbiased estimator of the covariance operator
Σ := E(k(·, Xs)⊗k(·, Xs)). We highlight that the unbiasedness of the covariance estimator is
critical in our analysis. In the following, we re-write the proposed kernel ε-greedy algorithm
of Section 3.1 in an implementable format.

3.3 Implementation of kernel ε-greedy algorithm

In this section, we devise an implementable version of the proposed strategy. To this, we
define the following.

• Let St,X : H → Rt be the sampling operator, such that St,Xf = 1√
t
[f(X1), . . . , f(Xt)]

>.

• The reconstruction operator is given by S∗t,X : Rt → H, where S∗t,Xα = 1√
t

∑t
s=1 αsk(·, Xs),

for α ∈ Rt.
• St,XS

∗
t,X = Kt

t
: Rt → Rt, where Kt is the kernel/Gram matrix.

We express the empirical covariance operator in (5) in terms of these operators. Let Λi,t be
a diagonal matrix in Rt×t with diagonal elements given by,{

ws,i :=
I{âs = i}

P (âs = i|Fs−1, Xs)
, s = 1, . . . , t

}
.

10



Then note that, Σ̂i,t = S∗t,XΛi,tSt,X and,

Σ̂i,tf =
1

t

t∑
s=1

ws,if(Xs)k(·, Xs) for all i = 1, . . . , L.

Let Yt = (y1, . . . , yt)
′. Then, the proposed estimator in (4) can be written as:

f̂i,t =
1√
t
(S∗t,XΛi,tSt,X + λI)−1 1√

t

t∑
s=1

ws,ik(·, Xs)ys

=
1√
t
(S∗t,XΛi,tSt,X + λI)−1S∗t,XΛi,tYt

=
1√
t
S∗t,X(Λi,tSt,XS

∗
t,X + λI)−1Λi,tYt,

where the last equality follows from the fact that,

(S∗t,XΛi,tSt,X + λI)−1S∗t,X = S∗t,X(Λi,tSt,XS
∗
t,X + λI)−1.

Therefore we obtain

f̂i,t =
1√
t
S∗t,X

(
Λi,t

Kt

t
+ λI

)−1

Λi,tYt, for i = 1, . . . , L. (6)

Then, using the definition of S∗t,X , the estimated reward function value at Xt+1 for arm i is
given by:

f̂i,t(Xt+1) =
1

t
k̄>t+1

(
Λi,t

Kt

t
+ λtI

)−1

Λi,tYt

= k̄>t+1(Λi,tKt + tλtI)−1Λi,tYt for i = 1, . . . , L, (7)

where, k̄t+1 = (k(X1, Xt+1), k(X2, Xt+1), . . . , k(Xt, Xt+1))>. Note that (7) involves only
inverting a t × t matrix and therefore this version of the estimator is implementable. In
order to facilitate faster computation, we use SVD for finding the inverse in (7).

4 Estimation error: Convergence rates
In this section, we present the theoretical results for the proposed algorithm for which the
proofs can be found in Section 8. We make the following assumptions throughout this paper
whenever we are working under the assumption that the mean reward functions lie in an
RKHS H.
(A3). ηi(Σ) ≤ C̄i−α, α > 1 where ηi(Σ) denotes the ith eigenvalue of Σ = E(k(·, Xs) ⊗
k(·, Xs)) and C̄ ∈ (0,∞).
(A4). For all i = 1, . . . , L, fi ∈ Ran(Σγi), 0 < γi ≤ 1

2
, i.e., there exists h ∈ H such that

fi = Σγih for i = 1, . . . , L.

11



Algorithm 1 Kernel ε-greedy algorithm
1: Randomly select arms â1, â2, . . . , ât0 ∈ A = {1, . . . , L} until each arm is selected at

least once.
2: for t = t0 + 1, . . . , T do
3: Estimate f̂i,t−1(Xt), for each i = A using (7).
4: Calculate the best-performing arm so far: At = arg maxi∈Af̂i,t−1(Xt).
5: For a non-increasing exploration probability sequence {εt, t ≥ 1}, the arm pulled is

given by:

ât =

{
At with probability 1− εt
{1, . . . , L}\At with probability εt

L−1
.

6: Observe reward Yt corresponding to ât.
7: For i = ât, update f̂i,t using (6) and use f̂i,t = f̂i,t−1 for i ∈ A\ât.
8: end for

Note that, (A3) implies that the effective dimension, NΣ,1(λ) := Tr ((Σ + λI)−1Σ) . λ−1/α,
which controls the complexity of H and (A4) determines the smoothness of the true mean
reward functions. Next, in Theorem 1, which is proved in Section 8.1, we present an upper
bound on the estimation error both in probability and in expectation.
Theorem 1. Suppose (A1)–(A4) hold and {εs}ts=1 is such that for any δ > 0 and t ≥ 1,

λi,t =

[
1

δt2

(
t∑

s=1

1

εs

)]α/(2γiα+α+1)

, i = 1, . . . , L, (8)

satisfies

λi,t ≥

[
4(L− 1)κA1(C̄, α)

δt2

(
t∑

s=1

1

εs

)]α/(1+α)

. (9)

Then, the following holds with probability at least 1− 2δ:

‖f̂i,t − fi‖H ≤ 2
√

2 max{C0, Ci}

[
1

δt2

(
t∑

s=1

1

εs

)]γiα/(2γiα+α+1)

, i = 1, . . . , L. (10)

Furthermore, for 0 ≤ ζ < γiα+α+1
γiα

,

E[‖f̂i,t − fi‖1+ζ
H ] ≤ B(C0, Ci, γi, ζ, α)

[
1

t2

t∑
s=1

1

εs

]wi(1+ζ)

, i = 1, . . . , L, (11)

where C0 =
√
σ2(L− 1)A1(C̄, α), A1(C̄, α) = C̄−1/α

∫∞
0

(1 + xα)−1 dx, Ci = ‖Σ−γifi‖H,
wi = γiα

2γiα+α+1
, and B(C0, Ci, γi, ζ, α) is a constant depending only on its arguments and

not on t and {εs}s.
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Note that the upper bound on the estimation error depends on the exploration probability
sequence {εs}ts=1, and for consistent estimation, we require

∑t
s=1 ε

−1
s = o(t2) as t→∞. Un-

der this requirement of
∑t

s=1 ε
−1
s = o(t2) as t→∞, it is easy to verify that (9) holds. Also,

we would like to highlight that the restriction on ζ appearing in Theorem 1 is due to poly-
nomial (precisely, quadratic) concentration in (10), which if improved to sub-exponential
or sub-Gaussian concentration would remove the upper bound restriction on ζ.
In order to compare Theorem 1 with Proposition 4.1 in Chen et al. (2021), we assume that
the underlying RKHS, H, is finite-dimensional, and make the following assumption instead
of (A4):
(A5). The minimum eigenvalue of Σ, denoted as ηmin(Σ) satisfies ηmin(Σ) > η for some
η > 0.
Since Chen et al. (2021) study linear contextual bandits which are equivalent to our ap-
proach when the kernel is linear, i.e., the corresponding RKHS is finite-dimensional, we
would like to specialize Theorem 1 to finite-dimensional RKHS. This assumption of finite-
dimensional RKHS is imposed through (A5), which is also assumed in Chen et al. (2021).
Theorem 2. Suppose (A1), (A2) and (A5) hold. For any δ > 0 and t ≥ 1, suppose {εs}ts=1

satisfies

1

t2

t∑
s=1

1

εs
≤ δη

4(L− 1)dκ
, (12)

where d := dim(H). Then, for any δ > 0 and t ≥ 1, with the choice of

λi,t =

[
1

δt2

(
t∑

s=1

1

εs

)]1/2

, i = 1, . . . , L,

the following holds with probability at least 1− 2δ:

‖f̂i,t − fi‖H ≤ 4 max{C̃0, C̃i}

[
1

δt2

(
t∑

s=1

1

εs

)]1/2

, i = 1, . . . , L.

Moreover, for 0 ≤ ζ < 1,

E[‖f̂i,t − fi‖1+ζ
H ] ≤ B(C̃0, C̃i, ζ, η)

[
1

t2

t∑
s=1

1

εs

] 1+ζ
2

, i = 1, . . . , L, (13)

where C̃0 :=
√

(L−1)dσ2

η
and C̃i := ‖fi‖H

η
. Here B(C̃0, C̃i, ζ, η) is a constant that depends

only on its arguments and not on t and {εs}s.
Note that in the above result, the choice of λi,t is independent of i unlike in the infinite-
dimensional case of Theorem 1. Moreover, unlike in Theorem 1, the choice of λi,t in Theo-
rem 2 has an exponent of 1

2
instead of the term depending on γi and α in (10). Clearly, the

estimators are consistent if
∑t

s=1 ε
−1
s = o(t2) as t → ∞. Under this requirement on {εs}s,

it is easy to verify that (12) holds. The proof of Theorem 2 is provided in Section 8.2.
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Remark 1. Chen et al. (2021) proposed a weighted online least squares estimator similar
to the IPWKR estimator for the linear contextual bandit problem with 2 arms (L = 2)
and a finite-dimensional context space. However, unlike our estimator, they study an un-
regularized online weighted least squares (WLS) estimator. Under the assumptions of (i)
bounded covariates, (ii) reliability of linear approximation, and (iii) minimum eigenvalue
are bounded from below, they provide a bound (see Proposition 4.1) on the estimation error,
which can be summarized to behave as

Õ

([
d2 log(4d/δ)

tε4t

]1/2
)

(14)

with probability at least 1− δ. On the other hand, our method provides a bound of

Õ

[d
δ

1

t2

( t∑
s=1

1

εs

)]1/2
 , (15)

which also holds with probability 1 − δ. By comparing (14) and (15), it can be observed
that the bound in Chen et al. (2021) holds with sub-Gaussian concentration while ours holds
with polynomial concentration. Another key distinction is the requirement of 1

εt
= o(t1/4) in

(14) vs.
∑t

s=1 ε
−1
s = o(t2) in (15) for the estimators to be consistent, as t → ∞. Clearly,

a sufficient condition for our estimator to be consistent is 1
εt

= o(t). Therefore, our result
is stronger than that of Chen et al. (2021), as the exploration probability can decay at a
faster rate while still guaranteeing the consistency of our estimator. This is promising as
for situations where the reward functions are relatively easier to learn, more exploitative
strategies can significantly reduce the regret. Another key highlight of our work is that these
improved results are obtained for any fi belonging to a finite-dimensional RKHS, that is not
necessarily linear.

5 Regret analysis
In this section, we construct upper bounds for the regret defined in Definition 1 for the algo-
rithm proposed in Section 3 that involves using the IPWKR estimator studied in Section 3.2.
Recall, a∗t = arg maxa∈Afa(xt), where fa(xt) = 〈fa, k(·, xt)〉H. Let At = arg maxa∈Af̂a(xt)
and note that by definition of At, f̂a∗t (Xt) ≤ f̂At(Xt). Then, the cumulative regret for the
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proposed algorithm up to some time horizon T is given by,

RT =
T∑
t=1

fa∗t (Xt)− fât(Xt) =

t0∑
t=1

fa∗t (Xt)− fât(Xt) +
T∑

t=t0+1

fa∗t (Xt)− fât(Xt)

=

t0∑
t=1

〈fa∗t − fât , k(·, Xt)〉H +
T∑

t=t0+1

fa∗t (Xt)− fât(Xt)

≤
t0∑
t=1

κ‖fa∗t − fât‖H +
T∑

t=t0+1

fa∗t (Xt)− fât(Xt) ≤ Λt0 +
T∑

t=t0+1

fa∗t (Xt)− fât(Xt)

= Λt0 +
T∑

t=t0+1

[
fa∗t (Xt)− f̂a∗t (Xt) + f̂a∗t (Xt)− fAt(Xt) + fAt(Xt)− fât(Xt)

]
≤ Λt0 +

T∑
t=t0+1

[
fa∗t (Xt)− f̂a∗t (Xt) + f̂At(Xt)− fAt(Xt) + fAt(Xt)− fât(Xt)

]
≤ Λt0 + 2

T∑
t=t0+1

sup
a∈A
|(fa(Xt)− f̂a,t(Xt))|︸ ︷︷ ︸

Cumulative estimation error

+
T∑

t=t0+1

|fAt(Xt)− fât(Xt)|︸ ︷︷ ︸
Randomization error

, (16)

where Λ := sup{‖fa − fa′‖H : a, a′ ∈ A, a 6= a′}, and for simplicity, we did not put the
algorithm within parenthesis for RT (as in Definition 1) though all the presented results
are for the proposed kernel ε-greedy algorithm. Note that the first term in (16) is the
regret incurred due to the random initialization up to time t0. We call the second term
on the right-hand side in (16) as cumulative estimation error, as it measures the error in
estimating the function accumulated over time, and the third term as randomization error
since it measures the error incurred due to the randomization scheme (ε-greedy in step
4 of the proposed algorithm in Section 3). Note that, the initialization phase regret can
be trivially bounded by O(t0), but the regret incurred during the post-initialization phase
dominates over the regret incurred over the initialization phase. Hence, without the loss of
generality, we set t0 = 0 in the following results and in the corresponding proofs.
Theorem 3. Suppose (A1)–(A4) hold, supa,a′∈A

a6=a′
‖fa− fa′‖H <∞, and {εs}Ts=1 is such that

for any δ > 0, and T ≥ 1,

λi,t =

[
L

δt2

(
t∑

s=1

1

εs

)]α/(2γiα+α+1)

, i ∈ {1, . . . , L}, 0 < t ≤ T, (17)

satisfies

λi,t ≥

[
4L(L− 1)κA1(C̄, α)

δt2

(
t∑

s=1

1

εs

)]α/(1+α)

i ∈ {1, . . . , L}, 0 < t ≤ T.

Define

∆t =
L

δt2

t∑
s=1

1

εs
.
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Then, for δ > 0, 1 ≤ p ≤ ∞ and T ≥ 1, the following holds with probability at least 1− 2δ:

RT ≤ κΘ
T∑
t=1

(
I{∆t < 1}∆

(mini∈A γi)α
2(mini∈A γi)α+α+1

t + I{∆t ≥ 1}∆
(maxi∈A γi)α

2(maxi∈A γi)α+α+1

t

)

+ κT 1− 1
p

 T∑
t=1

εt
L− 1

+

{
1

δ

T∑
t=1

εt
L− 1

}1/2
1/p

sup
a,a′∈A
a6=a′

‖fa − fa′‖H, (18)

where Θ = 4
√

2 max{C0,maxi∈ACi} with C0, Ci and A1(C̄, α) being defined in Theorem 1.
The first term in the r.h.s. of (18) corresponds to the estimation error accumulated by time
T and the second term corresponds to the randomization error. The cumulative estimation
error bound follows from the estimation error analysis in Theorem 1, after applying a
union bound over the arms. Note that for a given sequence of exploration probability, the
cumulative estimation error and the randomization error behave inversely to each other.
Further, note that if

∑t
s=1 ε

−1
s = o(t2) as t→∞, then clearly ∆t < 1 for some large enough

t. Let t1 = mint I{∆t < 1}. Then, we can choose the initialization phase endpoint to be
t̃0 = max{t0, t1}, which means only the first term in the accumulated estimation error would
contribute to the regret bound. This reflects that the estimation error incurred due to the
arm with the lowest smoothness parameter for the respective reward function dominates.
Remark 2. Suppose εt = t−β for some 0 < β < 1 and t ∈ N, which satisfies the requirement
that

∑t
s=1 ε

−1
s . tβ+1 = o(t2) as t → ∞. Then under the assumptions of Theorem 3, for

large enough T , (18) reduces to

RT . T (β−1)w+1 + T 1−β
p ,

for the choice of λi,t as in (17) and

w =
(mini∈A γi)α

2(mini∈A γi)α + α + 1
.

Since 1 ≤ p ≤ ∞ is arbitrary, the best regret is achieved at p = 1, yielding

RT . T (β−1)w+1 + T 1−β. (19)

In (19), the first term corresponds to an upper bound on the cumulative estimation error,
which is increasing in β and the second term corresponds to an upper bound on the random-
ization error, which is decreasing in β. By balancing these two terms, the optimal choice of
β is given by

β =
w

w + 1
=

(mini∈A γi)α

3(mini∈A γi)α + α + 1
=: β∗.

This means the optimal exploration probability sequence depends on the smoothness of the
targets and the intrinsic dimensionality of H, which is controlled by α. Clearly, if β > β∗,
i.e., exploitation is favored over exploration, the estimation error dominates the random-
ization error and the converse happens when β < β∗, i.e., exploration is favored over ex-
ploitation. Note that for any choice of γi and α, we have β∗ ≤ 1

5
, which implies the growth

rate of regret is at least of the order T 4/5.
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Next, in order to compare with the regret rate in Section 7.1 of Chen et al. (2021) for
the ε-greedy strategy, we specialize Theorem 3 to a finite-dimensional setting. While the
randomization error bound can be obtained similarly as the second term in (18), we modify
the bounding for the cumulative estimation error (see the proof in Section 8.4 for details).
Theorem 4. Suppose (A1), (A2) and (A5) hold, and supa,a′∈A

a6=a′
‖fa − fa′‖H < ∞. For any

δ > 0, suppose {εs}Ts=1 satisfies

1

t2

t∑
s=1

1

εs
≤ δη

4L(L− 1)dκ

for all 0 < t ≤ T , where d := dim(H). Then, for any δ > 0, 1 ≤ p ≤ ∞, T ≥ 1, and

λi,t =

[
L

δt2

(
t∑

s=1

1

εs

)]1/2

, i ∈ {1, . . . , L}, 0 < t ≤ T,

the following holds with probability at least 1− 2δ:

RT ≤ 8κmax{C̃0, C̃∗}
T∑
t=1

[
L

δt2

( t∑
s=1

1

εs

)]1/2

+ κT 1− 1
p

 T∑
t=1

εt
L− 1

+

{
1

δ

T∑
t=1

εt
L− 1

}1/2
1/p

sup
a,a′∈A
a6=a′

‖fa − fa′‖H, (20)

where C̃0 =
√

(L−1)dσ2

η
and C̃∗ = max1≤i≤L

‖fi‖H
η

.

Remark 3. As in Remark 2, the choice of εt = t−β for some 0 < β < 1 reduces (20) to

RT . T
β+1
2 + T 1−β,

Balancing these terms yields that RT has a growth order of at least T 2/3 with the choice of
β = 1

3
. Note that the estimation error (resp. randomization error) dominates the random-

ization error (resp. estimation error) if β > 1
3
(resp. β < 1

3
). We would like to highlight

that this rate of T 2/3 is optimal for contextual bandits using an ε-greedy strategy, i.e., this
strategy cannot achieve regret rates slower than T 2/3 for contextual bandits (Dann et al.,
2022, Theorem 3).

5.1 Regret analysis with the margin condition

In this section, we make an additional assumption known as the ‘margin condition’ on the
underlying reward functions as is commonly assumed in the contextual bandit’s literature
(Chen et al., 2021; Goldenshluger and Zeevi, 2013). Under this assumption, we can achieve
significant improvement in the expected regret rate as compared to the previous results.
Note that, here we construct regret upper bounds in expectation unlike the previous results
in Section 5 where we constructed upper bounds on the regret in probability. As in the
literature, we focus our analysis on L = 2 (two arms) though it can be extended to L arms.
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(A6). Margin Condition: There exists C > 0 such that PX∼PX (0 < |〈f1 − f0, k(·, X)〉H| ≤ l) ≤
Cl, ∀l > 0.

The assumption is related to the behavior of the distribution of the covariates near the
decision boundary {x : f1(x) = f0(x)}. As it is difficult to distinguish between the arms near
the boundary, imposing such an assumption helps to control the contribution of incorrect
decisions being made near the decision boundary. In the following theorem, we present an
upper bound on the expected regret for the kernel ε-greedy algorithm when the true mean
reward functions lie in an RKHS H.
Theorem 5. Let L = 2. Suppose (A1)–(A4) and (A6) hold with γ0 = γ1 = γ, ‖f1−f0‖H <
∞ and {εs}Ts=1 is such that for δ > 0, and T ≥ 1,

λt =

[
1

δt2

(
t∑

s=1

1

εs

)]α/(2γα+α+1)

, 0 < t ≤ T,

satisfies

λt ≥

[
4(L− 1)κA1(C̄, α)

δt2

(
t∑

s=1

1

εs

)]α/(1+α)

, 0 < t ≤ T.

Then, for T ≥ 1, θ > 0, and 0 ≤ ζ < (γα + α + 1)/γα, the following holds:

ERT ≤ κ‖f1 − f0‖H
T∑
t=1

εt
2

+ A0(ζ, κ, C0, C, C∗, γ, α)

T−θ T∑
t=1

(
1

t2

t∑
s=1

1

εs

)w

+ T θζ
T∑
t=1

(
1

t2

t∑
s=1

1

εs

)w(1+ζ)
 ,
(21)

where A0(ζ, κ, C0, C, C∗, γ, α) is a constant that depends only on its arguments and not on
T and {εs}s, w = αγ/(2αγ+α+1), C∗ = max1≤i≤L ‖Σ−γifi‖H, C0 and A1(C̄, α) are defined
in Theorem 1, and C is defined in (A6).
Remark 4. As in Remark 2, the choice of εt = t−β for some 0 < β < 1 and 0 ≤ ζ <
(1− w)/w for w = αγ/(2αγ + α + 1), reduces (21) to

ERT . T 1−β︸ ︷︷ ︸
I

+T−θ+(β−1)w+1︸ ︷︷ ︸
II

+T (β−1)(1+ζ)w+θζ+1︸ ︷︷ ︸
III

.

To get the final rate, we first balance II and III, and then balance the resulting rate and I.
Note that II is decreasing in θ while III is increasing in θ, and they are balanced when

θ =
( ζ

1 + ζ

)
w(1− β),

resulting in
IV := II + III = T (β−1)w

(1+2ζ)
(1+ζ)

+1.

18



Clearly, IV and I are increasing and decreasing functions of β for 0 < β < 1, respectively,
which are balanced when

ζ =
β − (1− β)w

2w(1− β)− β
.

For ζ to satisfy

0 ≤ ζ <
1− w
w

,

we need the condition

w

w + 1
≤ β <

2w

2w + 1
.

Therefore, ε-greedy algorithm achieves ERT = O(T 1−β) as T → ∞ for w/(w + 1) ≤ β <

2w/(2w+1). This means the best regret rate that we can achieve is T
2
3

+ε for any ε > 0 when
γ = 1

2
and α→∞ with the exploration sequence being chosen to satisfy εt = t−β, 1

5
≤ β < 1

3
.

In contrast to Remark 2 where the regret rate is at least T 4/5, the margin condition in (A6)

improves the best rate to T
2
3

+ε, ε > 0.
Next, we bound the expected cumulative regret in the finite-dimensional case and show it
is almost minimax optimal.
Theorem 6. Let L = 2. Suppose (A1), (A2), (A5), and (A6) hold, ‖f1 − f0‖H < ∞, and
for any δ > 0, T ≥ 1, {εs}Ts=1 satisfies

1

t2

t∑
s=1

1

εs
≤ δη

4(L− 1)dκ
, 0 < t ≤ T,

where d := dim(H). Then for δ > 0, T ≥ 1, θ > 0, 0 ≤ ζ < 1, and

λt =

[
1

δt2

(
t∑

s=1

1

εs

)]1/2

, 0 < t ≤ T, (22)

the following holds:

ERT ≤ κ‖f1 − f0‖H
T∑
t=1

εt
2

+ Ã(ζ, κ, C̃0, C, C̃∗)

T−θ T∑
t=1

[
1

t2

t∑
s=1

1

εs

]1/2

+ T θζ
T∑
t=1

(
1

t2

t∑
s=1

1

εs

)(1+ζ)/2
 ,
(23)

where Ã(ζ, κ, C̃0, C, C̃∗) is a constant that depends only on its arguments and not on T and
{εs}s, C̃0, and C̃∗ are defined in Theorem 4, and C is defined in (A6).
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Remark 5. The choice of εt = t−β for some 0 < β < 1 and 0 ≤ ζ < 1, reduces (23) to

ERT . T 1−β + T−θ+
β+1
2 + T

(β−1)(1+ζ)
2

+θζ+1. (24)

Similar to Remark 4, we first balance the second and the third term in (24), and then balance
the resulting rate with the first term in (24). As a result we obtain ERT = O(T 1−β) where
3
7
≤ β < 1

2
. Therefore, the best regret we can achieve in the setting of Theorem 6 is T

1
2

+ε,
ε > 0, which is almost minimax optimal with T 1/2 being the minimax optimal rate for linear
contextual bandits (Chen et al., 2021).

6 Numerical experiments
In this section, we compare the performance of the proposed kernel ε-greedy strategy with
other contextual bandit algorithms through numerical experiments. We use a Gaussian
kernel parameterized by γ > 0, i.e.,

K(x, x′) = exp
(
−γ2‖x− x′‖2

)
,

for the kernel bandit algorithms. We compare the following four strategies (with parameters
defined the parentheses to be tuned and selected) based on the cumulative regret incurred
until time horizon T = 1000:

1. Kernel ε-greedy algorithm with Gaussian kernel (regularization parameter λt, length-
scale parameter γ)

2. (a) Kernel ε-greedy algorithm with linear kernel using the choice of λt as in Theo-
rem 2,

(b) Weighted linear ε-greedy algorithm of Chen et al. (2021) with ridge regression
estimator and regularization parameter λt as in Theorem 2,

3. Weighted linear ε-greedy algorithm of Chen et al. (2021) (i.e., without regularization),
4. Kernel Upper Confidence Bound (Kernel UCB) algorithm of Valko et al. (2013) with

Gaussian kernel (exploration parameter τ , regularization parameter λt, length-scale
parameter γ).

Note that 2(a) and 2(b) are essentially the same algorithm since our estimator (3.2) with
a linear kernel is just a dual representation of the ridge regression version of the weighted
linear ε-greedy estimator of Chen et al. (2021). This is also reflected in the regret curves in
Figures 1(b),(d) and Figure 2(a),(b). For all the ε-greedy based algorithms (1-3), we choose
the exploration probability sequence εt = max{ t

−1/2 log (t)
10

, 0.02}, which is the same choice
as used by Chen et al. (2021) in their simulation setup. For algorithms 1 and 4, i.e., the
kernel ε-greedy and kernel UCB with Gaussian kernel, we do cross-validation as described
in Section 6.1 to determine the right choice of the parameters in the parentheses.
We consider four simulated data experiments for d-dimensional context space for d ∈
{1, 2, 3} and for L = 2 arms. All algorithms are run until the time horizon T = 1000
with initial random exploration time, t0 = 50. For the initialization phase until t0 = 50, we
randomly assign both arms 25 times each. In Figures 1(b), 1(d) and Figures 2(a), 2(b), we
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plot the average cumulative regret (averaged over 25 runs) over time for the four strategies.
It can be seen that in all four settings, the kernel ε-greedy with Gaussian kernel outperforms
the linear strategies by significantly reducing the regret incurred.

Setting 1: We let d = 1 and sample Xt
i.i.d.∼ Unif(−1, 1) for t = 1, . . . , T . The mean reward

functions considered are: f1(x) = sin(πx) and f2(x) = cos(πx) for −1 < x < 1 as in Figure
1(a). In Figure 1(b), note that kernel UCB performs the poorest amongst all four strategies
while kernel ε-greedy performs the best.
Setting 2: We consider a ‘chessboard’ like setup (see Figure 1(c)) similar to the exper-
imental setup of Zenati et al. (2022), where d = 2, and the mean reward functions are
f1(x) = 1 and f2(x) = 1 in the green and red regions, respectively, and 0 elsewhere. Here,
we sample each component of the covariates Xt ∈ R2, t = 1, . . . , T independently from
Unif(-1,1) distribution. Note that, in Figure 1(d), kernel UCB and kernel ε-greedy perform
better than the weighted ε-greedy linear algorithms. Both these algorithms give comparable
performance with the former being slightly better.
Settings 3 and 4: We consider two arms, L = 2, and covariate dimension, d = 3. For
both these settings, we follow the data generation process of Chen et al. (2021), wherein the
covariates Xt are sampled i.i.d. from a truncated normal distribution supported on [−10, 10]
with mean zero and scale parameter one. In Setting 3, we use a discretized version of the
‘Bump’ synthetic environment as in the experimental setup of Zenati et al. (2022). The
rewards are generated using the functions, fa(x) = max(0, 1−‖a−a∗‖1−〈w∗, x−x∗〉2), a =
1, 2 for some fixed a∗, x∗ and w∗. We fix a∗ = 2 and randomly generate d-dimensional vectors
x∗ and w∗. In Setting 4, we consider the following function: fa(x) = I{‖x − a + 0.5‖1 <
4}+0.5I{‖x− (a−1)‖1 < 4} for a = 1, 2. For setting 3, as can be seen in Figure 2(a), both
kernel UCB and kernel ε-greedy perform at par with each other and result in significantly
lower regret than the linear algorithms. For setting 4 as can be seen in Figure 2(b), kernel
ε-greedy performs better than the kernel UCB algorithm and significantly outperforms the
linear algorithms.

6.1 Choice of kernel parameters

In this section, we describe the methodology we use to tune and select the parameters
in the proposed kernel ε-greedy algorithm and the kernel UCB algorithm of Valko et al.
(2013). Note that for the kernel ε-greedy algorithm with Gaussian kernel, we need to
tune two parameters, λt and γ, while for the kernel UCB algorithm, we need to tune three
parameters, λ, γ, and the exploration parameter, τ . Below, we describe the steps for tuning
the two parameters in the former, while the same methodology is used to tune the three
parameters in the latter.
For selecting the two parameters γ and λ in implementing the kernel ε-greedy algorithm
(corresponding to the purple line in Figures 1(b),(d) and Figure 2), we use the following
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Figure 1: Left: Mean reward functions for settings 1 and 2. Right: Average cumulative
regret over 25 runs for the five strategies over time for T = 1000.

cross-validation approach. We consider the following choices for λt and γ, respectively:

λt ∈

{
t−1/2

√
log t

,
t−1/4

√
log t

,
t−1/6

√
log t

,
t−1/8

√
log t

,
t−1/16√
( log t)

, 5× 10−5, 0.005, 0.5

}
, and

γ ∈ {0.1, 0.3, 0.5, . . . , 5}.

Then, we use the following k-fold cross-validation approach with k = 10:
1. Sample X ∈ RT (k+1)×d.
2. Split this data into (k+1) subsets, each of size T . First k subsets are used as training

datasets and the (k + 1)th dataset is used as the test data.
3. For each pair of (λt, γ), run the algorithms independently on each of the training sets

(first k subsets) and note the regret incurred. Take the average cumulative regret
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Figure 2: Average cumulative regret over time for kernel ε-greedy algorithm with Gaussian
kernel, linear kernel (with and without regularization), and kernel UCB with Gaussian
kernel.

across all the k subsets.
4. Choose (λ∗t , γ

∗) that minimized the average regret at time T .
5. Run the kernel ε-greedy algorithm using the Gaussian kernel with length-scale γ∗

and regularization parameter λ∗t on the test dataset and repeat the experiment on
this dataset 25 times. The results reported in Figures 1(b),(d) and 2(a),(b) are the
averages of the cumulative regret over these 25 runs.

For Kernel UCB, we follow the same cross-validation approach but with the following grid
choices for λ, γ and τ :

λ ∈ {0.05, 0.15, 0.25, . . . , 5}, γ ∈ {0.5, 1.5, 2.5, . . . , 15}, and τ ∈ {0.05, 0.1, 0.15, . . . , 0.9},

where it has to be noted that Kernel UCB uses λ that does not vary with time (as suggested
in Valko et al., 2013) in contrast to ours which is time dependent.
For cases where a linear approximation would lead to a good classification of arms, our
algorithm still performs on par with the linear algorithms. However if one knows that
the true model is linear, it might be computationally efficient to opt for the linear ε-greedy
algorithm. If that is not the case, we can say that using the kernel ε- greedy can be beneficial
in most settings with the right choice of kernel.

7 Discussion
In this work, we proposes the kernel ε-greedy algorithm for contextual bandit problems with
finitely many arms. We provided upper bounds on the estimation error for the proposed
online regression estimator and provided sub-linear regret rates for the proposed algorithm.
While, the kernelized versions of UCB and Thompson sampling have been well-studied,
to our knowledge this is the first attempt at studying kernelized ε-greedy algorithm. The
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theoretical analysis presented is novel, as it utilizes the intrinsic properties of the RKHS
and exploits the simplicity of the ε-greedy algorithm, resulting in upper bounds that do
not depend on quantities like the maximum information gain like previous works. An
advantage of the analysis is that we achieve sub-linear regret bounds for wide choices of
kernels, along with achieving state-of-the-art regret bounds in a finite-dimensional setting,
even when the regressors are not linear. Simple strategies like ε-greedy are easy to imple-
ment and deeper theoretical understanding helps in supporting their application in real-life
sequential decision-making problems. From a practical point of view, addressing computa-
tional challenges in implementing the ε-greedy algorithm needs further research. One way
to address time and computational complexity would be by using incremental Nystr̈om
approximations as done by Zenati et al. (2022). While we employ cross-validation to tune
for the kernel parameters and regularization parameters, it can be time-consuming to do
an exhaustive search. Therefore, new computational techniques need to be devised to help
with parameter tuning. Another possible future direction is to study the effect of delayed
feedback on the kernel ε-greedy strategy, similar to Vakili et al. (2023). On the theoretical
front, though the results presented in this paper are non-asymptotic, they are based on
Chebyshev’s inequality in separable Hilbert spaces and so they only provide quadratic con-
centration. A future direction is to develop sharp Bernstein-type concentration inequality
for operator norm of a self-adjoint Hilbert-Schmidt operator-valued random element defined
on a separable Hilbert space, which would provide similar results as in this paper but with
sub-Gaussian concentration.

8 Proofs
In this section, we present the proofs of the main results of the paper. Before we present
the proofs, we present a result that is used in many of these proofs.
Lemma 1. E(Σ̂i,t) = Σ, where Σ̂i,t is defined in (5).

Proof. Consider,

E(Σ̂i,t) = E

[
1

t

t∑
s=1

I{âs = i}
P (âs = i|Fs−1, Xs)

k(·, Xs)⊗ k(·, Xs)

]

=
1

t

t∑
s=1

E
[

I{âs = i}
P (âs = i|Fs−1, Xs)

k(·, Xs)⊗ k(·, Xs)

]

=
1

t

t∑
s=1

E
[
E
(

I{âs = i}
P (âs = i|Fs−1, Xs)

k(·, Xs)⊗ k(·, Xs)

∣∣∣∣Fs−1, Xs

)]

=
1

t

t∑
s=1

E
[
P (âs = i|Fs−1, Xs)

P (âs = i|Fs−1, Xs)
k(·, Xs)⊗ k(·, Xs)

]

=
1

t

t∑
s=1

E(k(·, Xs)⊗ k(·, Xs)) = Σ, for i = 1, . . . , L,
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where the third equality follows from the law of iterated expectations.

8.1 Proof of Theorem 1

Without loss of generality, we will assume i = 1. Let π̂s := P (âs = 1|Fs−1, Xs). Then,

f̂1,t − f1 =
(

Σ̂1,t + λI
)−1 1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)ys − f1

=
(

Σ̂1,t + λI
)−1 1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)[〈k(·, Xs), f1〉H + es]− f1

=
(

Σ̂1,t + λI
)−1

[
−λf1 +

1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

]

=
(

Σ̂1,t + λI
)−1/2 (

Σ̂1,t + λI
)−1/2

(Σ + λI)1/2 (Σ + λI)−1/2

×

[
−λf1 +

1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

]
.

This implies that,

‖f̂1,t − f1‖H ≤
∥∥∥∥(Σ̂1,t + λI

)−1/2 (
Σ̂1,t + λI

)−1/2

(Σ + λI)1/2

∥∥∥∥
∞

×

∥∥∥∥∥(Σ + λI)−1/2

[
−λf1 +

1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

]∥∥∥∥∥
H

≤ ‖(Σ̂1,t + λI)−1/2‖∞‖(Σ̂1,t + λI)−1/2(Σ + λI)1/2‖∞

×

∥∥∥∥∥(Σ + λI)−1/2

[
−λf1 +

1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

]∥∥∥∥∥
H

≤ S1S2√
λ
, (25)

where

S1 :=

∥∥∥∥(Σ̂1,t + λI
)−1/2

(Σ + λI)1/2

∥∥∥∥
∞
, and

S2 :=

∥∥∥∥∥(Σ + λI)−1/2

[
−λf1 +

1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

]∥∥∥∥∥
H

.

We now bound S1 and S2. By defining Bt := (Σ + λI)−1/2(Σ− Σ̂1,t)(Σ + λI)−1/2, we have

S1 = ‖(Σ̂1,t + λI)−1/2(Σ + λI)1/2‖∞ = ‖(Σ + λI)1/2(Σ̂1,t + λI)−1(Σ + λI)1/2‖1/2
∞

= ‖(I −Bt)
−1‖1/2

∞

≤ (1− ‖Bt‖∞)−1/2,

25



where the last inequality follows from Lemma 3.6 of (Rudi et al. 2013). Note, ‖Bt‖∞ ≤
‖Bt‖HS, where ‖ · ‖HS denotes the Hilbert-Schmidt norm. Using Chebyshev’s inequality we
obtain,

P (‖Bt‖HS ≥ ε) ≤ E‖Bt‖2
HS

ε2
.

It follows from Lemma 1 that

E‖Bt‖2
HS = E‖(Σ + λI)−1/2(Σ̂1,t − Σ)(Σ + λI)−1/2‖2

HS

= E‖(Σ + λI)−1/2Σ̂1,t(Σ + λI)−1/2‖2
HS − ‖(Σ + λI)−1/2Σ(Σ + λI)−1/2‖2

HS. (26)

Define NΣ,2(λ) := ‖(Σ + λI)−1/2Σ(Σ + λI)−1/2‖2
HS and consider,

E‖(Σ + λI)−1/2Σ̂1,t(Σ + λI)−1/2‖2
HS

= E
〈

(Σ + λI)−1/2Σ̂1,t(Σ + λI)−1/2, (Σ + λI)−1/2Σ̂1,t(Σ + λI)−1/2
〉
HS

= ETr
[
(Σ + λI)−1/2Σ̂1,t(Σ + λI)−1Σ̂1,t(Σ + λI)−1/2

]
= ETr

[
(Σ + λI)−1Σ̂1,t(Σ + λI)−1Σ̂1,t

]
.

Now, plugging in the definition of Σ̂1,t from (5) and defining τ̂s = I{âs = 1}/π̂s, we obtain

E‖(Σ + λI)−1/2Σ̂1,t(Σ + λI)−1/2‖2
HS

= E

[
1

t2

t∑
s=1

t∑
`=1

τ̂sτ̂` Tr
(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
.

By breaking the double sum in the above expression into the cases when, (1) s = `, (2)
s > `, and (3) s < `, yields

E‖(Σ + λI)−1/2Σ̂1,t(Σ + λI)−1/2‖2
HS

= E

[
1

t2

t∑
s=1

τ̂ 2
s Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)

)]

+ E

[
1

t2

t−1∑
`=1

t∑
s=`+1

τ̂sτ̂` Tr
(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]

+ E

[
1

t2

t∑
`=2

`−1∑
s=1

τ̂sτ̂` Tr
(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
= 1 + 2 + 3 , (27)
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where we bound 1 – 3 as follows.

1 =
1

t2

t∑
s=1

E[τ̂ 2
s Tr((Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, Xs)⊗ k(·, Xs))]

=
1

t2

t∑
s=1

E
[
E[τ̂ 2

s Tr((Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, Xs)⊗ k(·, Xs))
∣∣Fs−1, Xs]

]
=

1

t2

t∑
s=1

E
[
E(τ̂ 2

s |Fs−1, Xs) Tr((Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, Xs)⊗ k(·, Xs))
]
,

(28)

where

E(τ̂ 2
s |Fs−1, Xs) = E

[
I{âs = 1}

π̂2
s

∣∣∣∣Fs−1, Xs

]
=
π̂s
π̂2
s

=
1

π̂s
≤ L− 1

εs
,

since 1− εs ≥ εs
L−1

, resulting in

(28) ≤ 1

t2

t∑
s=1

E
[
L− 1

εs
Tr
(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)

)]

≤ 1

t2

t∑
s=1

L− 1

εs
ETr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)

)
sup
Xs

‖(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)‖∞

≤ 1

t2

t∑
s=1

L− 1

εs
Tr
(
(Σ + λI)−1Σ

)
‖(Σ + λI)−1‖∞ sup

Xs

‖k(·, Xs)⊗ k(·, Xs)‖∞ (29)

≤ 1

t2

(
t∑

s=1

L− 1

εs

)
NΣ,1(λ)

κ

λ
, (30)

where NΣ,1(λ) := Tr ((Σ + λI)−1Σ).

2 =
1

t2

t−1∑
`=1

t∑
s=`+1

E
[
τ̂sτ̂` Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
=

1

t2

t−1∑
`=1

t∑
s=`+1

E
[
E[τ̂sτ̂` Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1

×k(·, X`)⊗ k(·, X`))|Fs−1, Xs]]

(†)
=

1

t2

t−1∑
`=1

t∑
s=`+1

E
[
τ̂`E(τ̂s|Fs−1, Xs) Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1

×k(·, X`)⊗ k(·, X`))]

=
1

t2

t−1∑
`=1

t∑
s=`+1

E
[
τ̂` Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
,

(31)
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where we used

E(τ̂s|Fs−1, Xs) = E
[
I{âs = 1}

π̂s

∣∣∣Fs−1, Xs

]
= 1 (32)

in (†). Now using the law of iterated expectation, we obtain

(31) =
1

t2

t−1∑
`=1

E

[
t∑

s=`+1

E[τ̂` Tr
(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)
|F`]

]

=
1

t2

t−1∑
`=1

E

[
τ̂` Tr

(
(Σ + λI)−1

( t∑
s=`+1

E(k(·, Xs)⊗ k(·, Xs)|F`)
)

(Σ + λI)−1

×k(·, X`)⊗ k(·, X`)
)]

=
1

t2

t−1∑
`=1

E
[
τ̂` Tr

(
(Σ + λI)−1(t− `)Σ(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
=

1

t2

t−1∑
`=1

(t− `)E
[
τ̂` Tr

(
(Σ + λI)−1Σ(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
=

1

t2

t−1∑
`=1

(t− `)E
[
E
[
τ̂` Tr

(
(Σ + λI)−1Σ(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)∣∣∣F`−1, X`

]]
=

1

t2

t−1∑
`=1

(t− `)E
[
E(τ̂`|F`−1, X`) Tr

(
(Σ + λI)−1Σ(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
. (33)

Again, using (32), we get

(33) =
1

t2

t−1∑
`=1

(t− `)E
[
Tr
(
(Σ + λI)−1Σ(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
=

1

t2

t−1∑
`=1

(t− `)
[
Tr
(
(Σ + λI)−1Σ(Σ + λI)−1Σ

)]
=

1

t2

t−1∑
`=1

(t− `)NΣ,2(λ) =
1

t2

[
t(t− 1)− (t− 1)t

2

]
NΣ,2(λ)

=
NΣ,2(λ)

2
− NΣ,2(λ)

2t
. (34)
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3 =
1

t2

t∑
`=2

`−1∑
s=1

E
[
τ̂sτ̂` Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
=

1

t2

t∑
`=2

`−1∑
s=1

E
[
E[τ̂sτ̂` Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1

×k(·, X`)⊗ k(·, X`))|F`−1, X`]]

=
1

t2

t∑
`=2

`−1∑
s=1

E
[
τ̂sE(τ̂`|F`−1, X`) Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1

×k(·, X`)⊗ k(·, X`))]

=
1

t2

t∑
`=2

`−1∑
s=1

E
[
τ̂s Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)]
.

(35)

Now, using law of iterated expectations, we have

(35) =
1

t2

t∑
`=2

`−1∑
s=1

E
[
E[τ̂s Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1k(·, X`)⊗ k(·, X`)

)∣∣Fs]]
=

1

t2

t∑
`=2

`−1∑
s=1

E
[
τ̂s Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1E[k(·, X`)⊗ k(·, X`)

∣∣Fs])]
=

1

t2

t∑
`=2

`−1∑
s=1

E
[
E
(
τ̂s Tr

(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1Σ

)
|Fs−1, Xs

)]

=
1

t2

t∑
`=2

`−1∑
s=1

E
[
Tr
(
E(τ̂s|Fs−1, Xs)(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1Σ

)]
=

1

t2

t∑
`=2

`−1∑
s=1

E
[
Tr
(
E(τ̂s|Fs−1, Xs)(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1Σ

)]
=

1

t2

t∑
`=2

`−1∑
s=1

E
[
Tr
(
(Σ + λI)−1k(·, Xs)⊗ k(·, Xs)(Σ + λI)−1Σ

)]
=

1

t2

t∑
`=2

(`− 1)NΣ,2(λ) =
1

t2

[
t(t− 1)

2

]
NΣ,2(λ)

=
NΣ,2(λ)

2
− NΣ,2(λ)

2t
. (36)
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Putting together (30), (34) and (36) in (27), and the result in (26), we get,

E‖Bt‖2
HS ≤

1

t2

(
t∑

s=1

L− 1

εs

)
NΣ,1(λ)

κ

λ
+ 2

(
NΣ,2(λ)

2
− 1

2t
NΣ,2(λ)

)
−NΣ,2(λ)

≤ 1

t2

(
t∑

s=1

L− 1

εs

)
NΣ,1(λ)

κ

λ
. (37)

Using Assumption (A3), we obtain,

E‖Bt‖2
HS ≤ A1(C̄, α)

κ

t2

(
t∑

s=1

L− 1

εs

)
λ−(1+1/α), α > 1,

where A1(C̄, α) is a constant depending only on C̄ and α. Therefore,

P

(
‖Bt‖HS ≥

1

2

)
≤ 4E‖Bt‖2

HS ≤
4κ

t2
A1(C̄, α)λ−(1+1/α)

(
t∑

s=1

L− 1

εs

)
.

Thus for δ > 0, choosing

λ ≥

[
4κA1(C̄, α)

t2δ

(
t∑

s=1

L− 1

εs

)]α/(1+α)

, α > 1,

yields

P

(
‖Bt‖HS ≥

1

2

)
≤ δ,

implying that with probability at least 1− δ,

S1 ≤
√

2. (38)

We now bound S2 as

S2 =

∥∥∥∥∥(Σ + λI)−1/2

[
−λf1 +

1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

]∥∥∥∥∥
H

≤

∥∥∥∥∥(Σ + λI)−1/2 1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

∥∥∥∥∥
H

+ λ‖(Σ + λI)−1/2f1‖H. (39)

For the second term in (39), using Assumption (A4), we have∥∥(Σ + λI)−1/2f1

∥∥
H ≤

∥∥(Σ + λI)−1/2Σγ1h
∥∥
H ≤

∥∥(Σ + λI)−1/2Σγ1
∥∥
∞ ‖Σ

−γ1f1‖H

≤ sup
i

ηγ1i
(ηi + λ)1/2

‖Σ−γ1f1‖H ≤ sup
x≥0

[
x2γ1

x+ λ

]1/2

‖Σ−γ1f1‖H

≤ λγ1−
1
2‖Σ−γ1f1‖H, (40)
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where the last inequality follows by noting that for 0 < γ1 ≤ 1/2,

(
sup
x≥0

x2γ1

x+ λ

)1/2

=

(
sup
x≥0

(
x

x+ λ

)2γ1 1

(x+ λ)1−2γ1

)1/2

≤ λγ1−
1
2 .

For any ξ > 0, applying Chebyshev’s inequality to the first term in (39) yields

P

(∥∥∥∥∥(Σ + λI)−1/2 1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

∥∥∥∥∥
H

≥ ξ

)

≤ 1

ξ2
E

∥∥∥∥∥(Σ + λI)−1/2 1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

∥∥∥∥∥
2

H

=
1

ξ2
E

〈
(Σ + λI)−1/2 1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es, (Σ + λI)−1/2 1

t

t∑
`=1

I{â` = 1}
π̂`

k(·, X`)e`

〉
H

=
1

ξ2
E

〈
(Σ + λI)−1,

1

t2

t∑
s=1

t∑
`=1

I{âs = 1}
π̂s

I{â` = 1}
π̂`

ese`k(·, Xs)⊗ k(·, X`)

〉
HS

=
1

ξ2

〈
(Σ + λI)−1,E

(
1

t2

t∑
s=1

t∑
`=1

I{âs = 1}
π̂s

I{â` = 1}
π̂`

ese`k(·, Xs)⊗ k(·, X`)

)〉
HS

.

(41)

In the following, we simplify the expectation term in (41) by considering three cases for
the double sum: (1) ` = s, (2) ` > s and (3) ` < s. Recall τ̂s = I{âs = 1}/π̂s, where
π̂s = P (âs = 1|Fs−1, Xs). Consider

E

(
1

t2

t∑
s=1

t∑
`=1

I{âs = 1}
π̂s

I{â` = 1}
π̂`

ese`k(·, Xs)⊗ k(·, X`)

)

= E

(
1

t2

t∑
s=1

I{âs = 1}
π̂2
s

e2
sk(·, Xs)⊗ k(·, Xs)

)
+ E

(
1

t2

t−1∑
`=1

t∑
s=`+1

τ̂sτ̂`ese`k(·, Xs)⊗ k(·, X`)

)

+ E

(
1

t2

t∑
`=2

`−1∑
s=1

τ̂sτ̂`ese`k(·, Xs)⊗ k(·, X`)

)
= 4 + 5 + 6 ,

where

4 = E

(
1

t2

t∑
s=1

I{âs = 1}
π̂2
s

e2
sk(·, Xs)⊗ k(·, Xs)

)

=
1

t2

t∑
s=1

E
[
E
(
I{âs = 1}

π̂2
s

e2
sk(·, Xs)⊗ k(·, Xs)

∣∣∣∣Fs−1, Xs, âs

)]
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=
1

t2

t∑
s=1

E
[
I{âs = 1}

π̂2
s

k(·, Xs)⊗ k(·, Xs)E
(
e2
s

∣∣Fs−1, Xs, âs
)]

� σ2

t2

t∑
s=1

E
[
I{âs = 1}

π̂2
s

k(·, Xs)⊗ k(·, Xs)

]

=
σ2

t2

t∑
s=1

E

[
E

[
I{âs = 1}

π̂2
s

k(·, Xs)⊗ k(·, Xs)

∣∣∣∣∣Fs−1, Xs

]]

=
σ2

t2

t∑
s=1

E
[

1

π̂s
k(·, Xs)⊗ k(·, Xs)

]
� σ2

t2

(
t∑

s=1

L− 1

εs

)
Σ, (42)

where the above inequality follows from (A1), and the fact that π̂s ≥ εs/(L− 1). To bound
5 , define Ds` := {âs = â` = 1}. Then the complement of this event consists of situations
when the two arms are not the same or either (or both) are not arm 1, i.e., one or both of
τ̂s and τ̂` will be zero. Therefore,

5 = E

(
1

t2

t−1∑
`=1

t∑
s=`+1

τ̂sτ̂`ese`k(·, Xs)⊗ k(·, X`)

)

=
1

t2

t−1∑
`=1

t∑
s=`+1

E [E (τ̂sτ̂`ese`k(·, Xs)⊗ k(·, X`)|Fs−1, Xs, Ds`)]

=
1

t2

t−1∑
`=1

t∑
s=`+1

E
[

1

π̂sπ̂`
E(ese`|Fs−1, Xs, Ds`)k(·, Xs)⊗ k(·, X`)

]

=
1

t2

t−1∑
`=1

t∑
s=`+1

E
[

1

π̂sπ̂`
E(es|Fs−1, Xs, âs = 1)E(e`|Fs−1, Xs, â` = 1)k(·, Xs)⊗ k(·, X`)

]
(43)

= 0, (44)

where (43) follows from (A2), i.e., errors and covariates at time t are independent for a
given arm. Similar to 5 , we obtain

6 = E

(
1

t2

t∑
`=2

`−1∑
s=1

τ̂sτ̂`ese`k(·, Xs)⊗ k(·, X`)

)

=
1

t2

t∑
`=2

`−1∑
s=1

E [E (τ̂sτ̂`ese`k(·, Xs)⊗ k(·, X`)|F`−1, X`, Ds`)]

=
1

t2

t∑
`=2

`−1∑
s=1

E
[

1

π̂sπ̂`
E(ese`|F`−1, X`, Ds`)k(·, Xs)⊗ k(·, X`)

]

=
1

t2

t∑
`=2

`−1∑
s=1

E
[

1

π̂sπ̂`
E(es|F`−1, X`, âs = 1)E(e`|F`−1, X`, â` = 1)k(·, Xs)⊗ k(·, X`)

]
= 0. (45)

32



Combining (42), (44) and (45) in (41), we obtain

P

(∥∥∥∥∥(Σ + λI)−1/2 1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

∥∥∥∥∥
H

≥ ξ

)
≤ 1

ξ2

〈
(Σ + λI)−1,

σ2

t2

(
t∑

s=1

L− 1

εs

)
Σ

〉
HS

=
σ2

t2ξ2

(
t∑

s=1

L− 1

εs

)
Tr
[
(Σ + λI)−1Σ

]
=

σ2

t2ξ2

(
t∑

s=1

L− 1

εs

)
NΣ,1(λ) (46)

≤ σ2A1(C̄, α)

t2ξ2

(
t∑

s=1

L− 1

εs

)
λ−1/α, (47)

where we used (A3) in the last inequality. Combining (40) and (47) in (39), and choosing

ξ =

[
σ2A1(C̄, α)

δt2

(
t∑

s=1

L− 1

εs

)
λ−1/α

]1/2

,

yields that with probability at least 1− δ,

S2 ≤

[
σ2A1(C̄, α)

δt2

(
t∑

s=1

L− 1

εs

)
λ−1/α

]1/2

+ λγ1+ 1
2‖Σ−γ1f1‖H. (48)

Using (38) and (48) in (25) yields that with probability at least 1− 2δ, we have

‖f̂1,t − f1‖H ≤

[
2σ2A1(C̄, α)

δt2

(
t∑

s=1

L− 1

εs

)
λ−(1+1/α)

]1/2

+
√

2λγ1‖Σ−γ1f1‖H

≤
√

2 max{C0, C1}

( 1

δt2

(
t∑

s=1

1

εs

)
λ−(1+1/α)

)1/2

+ λγ1

 , (49)

where C0 =
√
σ2(L− 1)A1(C̄, α) and C1 = ‖Σ−γ1f1‖H. The result follows by choosing

λ = λ1,t :=

[
1

δt2

(
t∑

s=1

1

εs

)]α/(2γ1α+α+1)

in (49). Also, the same proof works for all arms i = 1, . . . , L, by defining π̂s = P (âs =
i|Fs−1, Xs).
Next, we derive the bound for the estimation error in expectation. From the above, note
that, for i = 1, . . . , L and any δ > 0,

P (‖f̂i,t − fi‖H ≤ θt) ≥ 1− 2δ,

where,

θt = 2
√

2 max{C0, Ci}

[
1

δt2

(
t∑

s=1

1

εs

)]γiα/(2γiα+α+1)

.
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For any θ > 0, the above inequality can be alternately written as

P (‖f̂i,t − fi‖H > θ) ≤ min

1,

(
2
√

2 max{C0, Ci}
θ

) 2γiα+α+1

γiα
[

1

t2

(
t∑

s=1

1

εs

)] .

The expectation result therefore follows by using E(‖f̂i,t − fi‖1+ζ
H ) =

∫∞
0
P (‖f̂i,t − fi‖H >

θ)θζdθ.

8.2 Proof of Theorem 2

Since most steps in the proof of Theorem 2 follow that of the proof of Theorem 1, we only
highlight the differences when H is finite-dimensional. Again, without loss of generality,
we assume that i = 1 and the proof for other arms follows similarly. Recall, π̂s := P (âs =
1|Fs−1, Xs). Note that (A5) implies H is finite-dimensional. Define d := dim(H). Then

NΣ,1(λ) = Tr((Σ + λI)−1Σ) = sup
i

ηi(Σ)d

(ηi(Σ) + λ)
≤ d, and ‖(Σ + λI)−1‖∞ ≤

1

η
. (50)

Therefore (25) modifies to

‖f̂1,t − f1‖H ≤ ‖(Σ̂1,t + λI)−1/2‖∞‖(Σ̂1,t + λI)−1/2(Σ + λI)1/2‖∞

×

∥∥∥∥∥(Σ + λI)−1/2

[
−λf1 +

1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)εs

]∥∥∥∥∥
H

≤ ‖(Σ + λI)−1/2‖∞‖(Σ̂1,t + λI)−1/2(Σ + λI)1/2‖2
∞

×

∥∥∥∥∥(Σ + λI)−1/2

[
−λf1 +

1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)εs

]∥∥∥∥∥
H

≤ S
2
1S2√
η
. (51)

We now bound S1 and S2. Bounding S1 proceeds exactly as in the proof of Theorem 1 until
(29) yielding

1 ≤ 1

t2

t∑
s=1

L− 1

εs
Tr
(
(Σ + λI)−1Σ

)
‖(Σ + λI)−1‖∞ sup

Xs

‖k(·, Xs)⊗ k(·, Xs)‖∞

≤ 1

t2

(
t∑

s=1

L− 1

εs

)
dκ

η
, (52)

where we use (50) in the last line of the above inequality. Putting together (52), (34) and
(36) in (27), and the result in (26), we get the following analog of (37):

E‖Bt‖2
HS ≤

(L− 1)dκ

η

(
1

t2

t∑
s=1

1

εs

)
.
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Therefore, using Chebyshev’s inequality,

P

(
‖Bt‖HS ≥

1

2

)
≤ 4E‖Bt‖2

HS ≤
4(L− 1)dκ

η

(
1

t2

t∑
s=1

1

εs

)
≤ δ.

Thus for δ > 0, with probability at least 1− δ, we obtain

S2
1 ≤ 2.

To bound S2, we bound the second term in (39) as

λ‖(Σ + λI)−1/2f1‖H ≤ λ‖(Σ + λI)−1/2‖∞‖f1‖H ≤
λ
√
η
‖f1‖H. (53)

For bounding the first term of (39), we follow the same steps as in the proof of Theorem 1
until (46). By using (50) in (46), we obtain

P

(∥∥∥∥∥(Σ + λI)−1/2 1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

∥∥∥∥∥
H

≥ ξ

)
≤ (L− 1)σ2d

ξ2

(
1

t2

t∑
s=1

1

εs

)
,

i.e., with probability at least 1− δ,∥∥∥∥∥(Σ + λI)−1/2 1

t

t∑
s=1

I{âs = 1}
π̂s

k(·, Xs)es

∥∥∥∥∥
H

≤
√

(L− 1)σ2d

δ

(
1

t2

t∑
s=1

1

εs

) 1
2

. (54)

Combining (53) and (54) in (39), we obtain that with probability at least 1− δ,

S2 ≤
√

(L− 1)σ2d

δ

(
1

t2

t∑
s=1

1

εs

) 1
2

+
λ
√
η
‖f1‖H.

Using these bounds on S1 and S2 in (51), we obtain that with probability at least 1− 2δ,

‖f̂1,t − f1‖H ≤

[
4(L− 1)σ2d

δη

(
1

t2

t∑
s=1

1

εs

)]1/2

+
2λ

η
‖f1‖H

≤ 2 max{C̃0, C̃1}

( 1

δt2

(
t∑

s=1

1

εs

))1/2

+ λ

 ,
where C̃0 :=

√
(L− 1)σ2d/η and C̃1 := ‖f1‖H/η. The result, therefore, follows by choosing

λ = λt :=

[
1

δt2

(
t∑

s=1

1

εs

)]1/2

.

Note, that same proof works for all arms i = 1, . . . , L, by defining π̂s = P (âs = i|Fs−1, Xs).
The expectation bound follows the same idea as in the proof of Theorem 1.
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8.3 Proof of Theorem 3

The randomization error in the regret decomposition in (16) can be bounded as

T∑
t=1

|fAt(Xt)− fât(Xt)| =
T∑
t=1

|〈fAt − fât , k(·, Xt)〉H|

=
T∑
t=1

I{ât 6= At}| 〈fAt − fât , k(·, Xt)〉H | ≤ κ
T∑
t=1

I{ât 6= At}‖fAt − fât‖H

≤ κ

(
T∑
t=1

I{ât 6= At}

)1/p( T∑
t=1

‖fAt − fât‖
q
H

)1/q

, (55)

≤ κ

(
T∑
t=1

I{ât 6= At}

)1/p
T sup

a,a′∈A
a6=a′

‖fa − fa′‖qH


1/q

= κT 1/q

(
T∑
t=1

I{ât 6= At}

)1/p

sup
a,a′∈A
a6=a′

‖fa − fa′‖H, (56)

where we obtain (55) by Hölder’s inequality with p and q such that 1
p

+ 1
q

= 1, for p, q ∈
[1,∞]. Next, we bound the first term in (56) below. By the law of iterated expectations,
we obtain

E[I{ât 6= At}] = E [E(I{ât 6= At}|Ft−1, Xt)] = E[P (ât 6= At|Ft−1, Xt)] =
εt

L− 1
. (57)

Therefore, for any ξ > 0, Chebyshev’s inequality yields

P

(∣∣∣∣∣
T∑
t=1

I{ât 6= At} −
T∑
t=1

εt
L− 1

∣∣∣∣∣ ≥ ξ

)
≤ 1

ξ2
E

[
T∑
t=1

(
I{ât 6= At} −

εt
L− 1

)]2

=
1

ξ2
E

[
T∑
t=1

T∑
s=1

(
I{ât 6= At}I{âs 6= As} −

εt
L− 1

I{âs 6= As} −
εs

L− 1
I{ât 6= At}+

εtεs
(L− 1)2

)]
.

Now, we simplify the expectation in the r.h.s. of the above inequality by considering cases:
(i) s = t, (ii) s < t and (iii) s > t as

P

(∣∣∣∣∣
T∑
t=1

I{ât 6= At} −
T∑
t=1

εt
L− 1

∣∣∣∣∣ ≥ ξ

)
≤ 7 + 8 + 9 ,
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where

7 :=
1

ξ2
E

[
T∑
t=1

(
1− 2εt

L− 1

)
I{ât 6= At}+

ε2t
(L− 1)2

]
(57)
=

1

ξ2

T∑
t=1

[(
1− 2εt

L− 1

)(
εt

L− 1

)
+

ε2t
(L− 1)2

]

=
1

ξ2

T∑
t=1

εt
L− 1

− ε2t
(L− 1)2

=
1

ξ2

T∑
t=1

εt
L− 1

[
1− εt

L− 1

]
,

and

8 :=
1

ξ2

T∑
t=2

t−1∑
s=1

[
E
[
I{ât 6= At}I{âs 6= As}

]
− εt
L− 1

E
[
I{âs 6= As}

]
− εs
L− 1

E
[
I{ât 6= At}

]
+

εtεs
(L− 1)2

]
= 0,

which follows from (57) and for s < t,

E
[
I{ât 6= At}I{âs 6= As}

]
= E

[
E(I{ât 6= At}I{âs 6= As} | Ft−1, Xt)

]
= E

[
I{âs 6= As}P (ât 6= At|Ft−1, Xt)

]
= E

[
I{âs 6= As} ×

εt
L− 1

]
(57)
=

(
εs

L− 1

)(
εt

L− 1

)
= E[I{ât 6= At}]E[I{âs 6= As}].

Through similar calculation, it follows that

9 :=
1

ξ2

[
T−1∑
t=1

T∑
s=t+1

E[I{ât 6= At}I{âs 6= As}]−
εt

L− 1
E[I{âs 6= As}]−

εs
L− 1

E[I{ât 6= At}]

+
εtεs

(L− 1)2

]
= 0.

Therefore, we obtain

P

(∣∣∣∣∣
T∑
t=1

I{ât 6= At} −
T∑
t=1

εt
L− 1

∣∣∣∣∣ ≥ ξ

)
≤ 1

ξ2

T∑
t=1

εt
L− 1

[
1− εt

L− 1

]
≤ 1

ξ2

T∑
t=1

εt
L− 1

,

which implies for any δ > 0, with probability at least 1− δ,

T∑
t=1

εt
L− 1

−

[
1

δ

T∑
t=1

εt
L− 1

]1/2

≤
T∑
t=1

I{ât 6= At} ≤
T∑
t=1

εt
L− 1

+

[
1

δ

T∑
t=1

εt
L− 1

]1/2

. (58)
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Using (58) in (56) yields that with probability at least 1− δ,

T∑
t=1

|fAt(Xt)− fât(Xt)| ≤ κT 1− 1
p

 T∑
t=1

εt
L− 1

+

{
1

δ

T∑
t=1

εt
L− 1

}1/2
1/p

sup
a,a′∈A
a6=a′

‖fa − fa′‖H.

(59)

Next, we construct an upper bound for the cumulative estimation error in the regret de-
composition in (16). By recalling A := {1, . . . , L}, consider

sup
i∈A
|(fi(Xt)− f̂i(Xt))| = sup

i∈A
|〈fi − f̂i,t, k(·, Xt)〉H| ≤ κ sup

i∈A
‖fi − f̂i,t‖H, (60)

where we will use Theorem 1 to bound (60). To this end, by union bounding, we have

P

(
sup
i∈A
‖fi − f̂i,t‖H ≥ bt

)
≤

L∑
i=1

P
(
‖fi − f̂i,t‖H ≥ bt

)

≤

(
1

t2

t∑
s=1

1

εs

)
L∑
i=1

(
2
√

2 max{C0, Ci}
bt

)1/wi

≤ L

(
1

t2

t∑
s=1

1

εs

)
max
i∈A

(
2
√

2 max{C0, Ci}
bt

)1/wi

≤ L

(
1

t2

t∑
s=1

1

εs

)
max
i∈A

(
Θ

bt

)1/wi

≤ L

(
1

t2

t∑
s=1

1

εs

)
×


(

Θ
bt

)maxi∈A 1/wi
, bt < Θ(

Θ
bt

)mini∈A 1/wi
, bt ≥ Θ

,

where Θ := maxi∈A 2
√

2 max{C0, Ci} and wi = γiα/(2γiα + α + 1). This means with
probability at least 1− δ,

sup
i∈A
‖fi − f̂i,t‖H ≤

{
Θ∆

mini∈A wi
t , ∆t < 1

Θ∆
maxi∈A wi
t , ∆t ≥ 1

=

Θ∆
(mini∈A γi)α

2(mini∈A γi)α+α+1

t , ∆t < 1

Θ∆
(maxi∈A γi)α

2(maxi∈A γi)α+α+1

t , ∆t ≥ 1

, (61)

where

∆t :=
L

δt2

t∑
s=1

1

εs

and used the fact that h(x) = xα
2xα+α+1

is a strictly increasing function of x for all α > 0.
The result follows by using (61) in (60) and combining it with (59) in (16), while noting
that λi,t is given by the choice in (8) in Theorem 1 but with δ replaced by δ/L.
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8.4 Proof of Theorem 4

We bound the randomization error exactly as in the proof of Theorem 3 in Section 8.3. For
bounding the cumulative estimation error, instead of Theorem 1, we use the bound from
Theorem 2 in (60). Then using the same union bounding idea as in the proof of Theorem 3,
we obtain

P

(
sup
i∈A
‖fi − f̂i,t‖H ≥ bt

)
≤

L∑
i=1

P
(
‖fi − f̂i,t‖H ≥ bt

)
≤

(
1

t2

t∑
s=1

1

εs

)
L∑
i=1

(
4 max{C̃0, C̃i}

bt

)2

≤ L

(
1

t2

t∑
s=1

1

εs

)(
4 max{C̃0, C̃∗}

bt

)2

,

which implies that with probability at least 1− δ,

sup
i∈A
‖fi − f̂i,t‖H ≤ 4 max{C̃0, C̃∗}

(
L

δt2

t∑
s=1

1

εs

)1/2

.

The result follows by using the above bound in (60) and combining it with (59) in (16).

8.5 Proof of Theorem 5

Since L = 2, a ∈ {0, 1}. Recall, As = arg maxa∈{0,1}f̂a,s−1(Xs). Note that the regret in
Definition 1 can be written as

RT =
T∑
s=1

|f1(Xs)− f0(Xs)|I{âs 6= a∗s},

where

I{âs 6= a∗s} = I{âs 6= a∗s, a
∗
s = As}+ I{âs 6= a∗s, a

∗
s 6= As} ≤ I{âs 6= As}+ I{As 6= a∗s}.

Therefore,

ERT ≤ E
T∑
s=1

|f1(Xs)− f0(Xs)|I{âs 6= As}+ E
T∑
s=1

|f1(Xs)− f0(Xs)|I{As 6= a∗s}

= R
(1)
T +R

(2)
T , (62)

where

R
(1)
T := E

T∑
s=1

|f1(Xs)− f0(Xs)|I{âs 6= As}

is the error due to exploration (or randomization) and

R
(2)
T := E

T∑
s=1

|f1(Xs)− f0(Xs)|I{As 6= a∗s}
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is the cumulative estimation error. Next, we bound these two terms as follows.

R
(2)
T = E

T∑
s=1

|f1(Xs)− f0(Xs)|I{As 6= a∗s}

=
T∑
s=1

E [|f1(Xs)− f0(Xs)|I{As 6= a∗s}]

=
T∑
s=1

E
[
E
[
|f1(Xs)− f0(Xs)|I{As 6= a∗s}

∣∣∣Fs−1

]]
. (63)

We only consider the inner expectation from here onwards and find an upper bound for
that. Let f̂s−1 = f̂1,s−1 − f̂0,s−1 and f− = f1 − f0. We have that

E
[
|f1(Xs)− f0(Xs)|I{As 6= a∗s}

∣∣∣Fs−1

]
= −E

[(
I{f̂s−1(Xs) ≥ 0} − I{f−(Xs) ≥ 0}

)
I{f−(Xs) 6= 0}f−(Xs)

∣∣∣Fs−1

]
≥ 0. (64)

Similarly, we have that

E
[(
I{f̂s−1(Xs) ≥ 0} − I{f−(Xs) ≥ 0}

)
I{f−(Xs) 6= 0}f̂s−1(Xs)

∣∣∣Fs−1

]
≥ 0. (65)

Therefore using the fact that both (64) and (65) are non-negative, we get

T∑
s=1

E
[
|f1(Xs)− f0(Xs)|I{As 6= a∗s}

∣∣∣Fs−1

]
≤

T∑
s=1

E
[(
I{f̂s−1(Xs) ≥ 0} − I{f−(Xs) ≥ 0}

)
I{f−(Xs) 6= 0}(f̂s−1(Xs)− f−(Xs))

∣∣∣Fs−1

]
= S1 + S2, (66)

where for θ > 0,

S1 :=
T∑
s=1

E
[
I{0 < |f−(Xs)| ≤ T−θ}

(
I{f̂s−1(Xs) ≥ 0} − I{f−(Xs) ≥ 0}

)
×I{f−(Xs) 6= 0}(f̂s−1 − f−)(Xs)

∣∣∣Fs−1

]
,

and

S2 :=
T∑
s=1

E
[
I{|f−(Xs)| > T−θ}

(
I{f̂s−1(Xs) ≥ 0} − I{f−(Xs) ≥ 0}

)
×I{f−(Xs) 6= 0}(f̂s−1 − f−)(Xs)

∣∣∣Fs−1

]
.
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Note that

S1 ≤
T∑
s=1

E
[
I{0 < |f−(Xs)| ≤ T−θ}(f̂s−1 − f−)(Xs)

∣∣∣Fs−1

]
≤

T∑
s=1

CκT−θ‖f̂s−1 − f−‖H (67)

≤ CκT−θ
T∑
s=1

‖f̂s−1 − f−‖H ≤ CκT−θ
T∑
s=1

[
‖f̂1,s−1 − f1‖H + ‖f̂0,s−1 − f0‖H

]
, (68)

where (67) follows from (A6) and the fact that supx∈X k(x, x) ≤ κ. The last inequality
follows from the definition of f̂s−1 and f−. Now, taking the expectation of S1 in (68) we
get that,

ES1 ≤ CκT−θ
T∑
s=1

[
E‖f̂1,s−1 − f1‖H + E‖f̂0,s−1 − f0‖H

]
≤ 2CκT−θ max

i∈{0,1}
B(C0, ‖Σ−γfi‖H, γ, 0, α)

T∑
t=1

[
1

t2

t∑
s=1

1

εs

]w
, (69)

where the last inequality follows from Theorem 1 with C0 =
√
σ2A1(C̄, α) and w =

γα/(2γα + α + 1).
Next, to construct an upper bound for S2, we use the fact that

I{|(f̂s−1 − f−)(x)| > |f−(x)|} ≥ I{f̂s−1(x) ≥ 0} − I{f−(x) ≥ 0}.

For ζ ≥ 0, we obtain

S2 ≤
T∑
s=1

E
[
I{|f−(Xs)| > T−θ}I{|(f̂s−1 − f−)(Xs)| > |f−(Xs)|}|(f̂s−1 − f−)(Xs)|

∣∣∣Fs−1

]
≤

T∑
s=1

E

[
I{|f−(Xs)| > T−θ}|(f̂s−1 − f−)(Xs)|1+ζ

|f−(Xs)|ζ
∣∣∣Fs−1

]

≤ T θζ
T∑
s=1

E
[
|(f̂s−1 − f−)(Xs)|1+ζ

∣∣∣Fs−1

]
≤ κ1+ζT θζ

T∑
s=1

‖f̂s−1 − f−‖1+ζ
H . (70)

Taking expectation of S2, choice of λi,t as in (8) and using (11) we obtain

ES2 ≤ 2 max
i∈{0,1}

B(C0, ‖Σ−γfi‖H, γ, ζ, α)κ1+ζT θζ
T∑
s=1

[
1

t2

t∑
s=1

1

εs

]w(1+ζ)

, (71)

for 0 ≤ ζ < γα+α+1
γα

. Combining (69), (71), and (66) in (63), we obtain

R
(2)
T ≤ ES1 + ES2

. T−θ
T∑
t=1

[
1

t2

t∑
s=1

1

εs

]w
+ T θζ

T∑
t=1

[
1

t2

t∑
s=1

1

εs

]w(1+ζ)

. (72)
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Now, we bound R(1)
T as

R
(1)
T = E

T∑
s=1

|f1(Xs)− f0(Xs)|I{âs 6= As}

≤ κ‖f1 − f0‖H
T∑
s=1

EI{âs 6= As} ≤ κ‖f1 − f0‖H
T∑
s=1

P (âs 6= As)

= κ‖f1 − f0‖H
T∑
s=1

εs
2
. (73)

Combining (72) and (73) in (62) yields the result.

8.6 Proof of Theorem 6

Recall, As = arg maxa∈{0,1}f̂a,s−1(Xs). We repeat the same steps of the proof of Theo-
rem 5 but specialized to the setting of a finite-dimensional RKHS. Again, we re-write the
cumulative regret for the proposed strategy as,

RT =
T∑
s=1

|f1(Xs)− f0(Xs)|I{âs 6= a∗s}.

We then break the expected regret into R(1)
T , the error due to exploration (or randomization)

and R(2)
T , the cumulative estimation error. Let us first consider R(2)

T . Following exactly the
same steps as in the proof of Theorem 5, we then split R(2)

T into two parts, S1 and S2

respectively, as in (66). Using Assumption (A6) and the fact that supx∈X k(x, x) ≤ κ, we
get

S1 ≤
T∑
s=1

E
[
I{0 < |f−(Xs)| ≤ T−θ}(f̂s−1 − f−)(Xs)

∣∣Fs−1

]
≤

T∑
s=1

CκT−θ‖f̂s−1 − f−‖H ≤ CκT−θ
T∑
s=1

‖f̂s−1 − f−‖H

≤ CκT−θ
T∑
s=1

[
‖f̂1 − f1‖H + ‖f̂0 − f0‖H

]
,

yielding

ES1 ≤ 2CκT−θ max
i∈{0,1}

B(C̃0, C̃i, 0, η)
T∑
t=1

[
1

t2

t∑
s=1

1

εs

]1/2

,

where the last inequality from (13) in Theorem 2. For S2, similar to (70), for the choice of
λi,t as in (22) we get that for 0 ≤ ζ < 1,

ES2 ≤ κ1+ζT θζ
T∑
s=1

E‖f̂s−1 − f−‖1+ζ
H ≤ 2 max

i∈{0,1}
B(C̃0, C̃i, ζ, η)κ1+ζT θζ

T∑
t=1

[
1

t

t∑
s=1

1

εs

](1+ζ)/2

,
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where the last inequality follows from (13). The result follows by using the bound in (73)
for R(1)

T and using these bounds in ERT ≤ R
(1)
T +R

(2)
T .
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