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Abstract

We introduce a nonlinear global regression model for object-valued predic-

tor and response tuples. Random object data are complex non-Euclidean data

taking value in general metric space, possibly devoid of any underlying vector

space structure. Such data are getting increasingly abundant with the rapid

advancement in technology. Examples include probability distributions, posi-

tive semi-definite matrices, and data on Riemannian manifolds. We propose the

notion of a weak conditional Fréchet mean to aid the object regression frame-

work. One of the main contributions is to establish a connection between the

conditional Fréchet mean and the weak conditional Fréchet mean, the latter

can being a generalization of the former. The motivation is based on Carleman

operators and their inducing functions in the particular case of the classical

Euclidean data. The state-of-the-art global Fréchet regression approach by Pe-

tersen and Müller (2019) emerges as a special case of the proposed model. We

require that the metric space where the predictors reside admits a reproducing

kernel Hilbert space embedding that is rich enough to characterize the joint

probability distribution of the responses and the predictors, while the intrinsic

geometry of the metric space where the responses lie is utilized to study the

asymptotic convergence of the proposed estimates. Numerical studies, includ-

ing both simulations and a data application, are conducted to investigate the

performance of our estimator in a finite sample.

1 Introduction

Encountering complex non-Euclidean data-taking values in a general metric space

that may defy any inherent linear structure has become increasingly common in the

areas such as biological or social sciences. With the rapid advancement of technol-

ogy, we encounter an abundance of such complex random objects recorded as shapes,
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time-courses of images, and networks. Examples of such “random object” data (Mar-

ron and Alonso, 2014) include distributional data in Wasserstein space (Delicado

and Vieu, 2017; Le Gouic and Loubes, 2017), symmetric positive definite matrix ob-

jects (Dryden et al., 2009), data on the surface of the sphere (Di Marzio et al., 2014),

phylogenetic trees (Billera et al., 2001), and finite-dimensional Riemannian manifolds

objects (Afsari, 2011), among others. Since the data are metric space valued, many

classical notions of statistics, such as the definition of sample or population mean

as an average or expected value, do not apply anymore and need to be replaced by

barycenters or Fréchet means (Fréchet, 1948). Similarly, for random object responses

Y residing in a metric space (ΩY , dY ) and Euclidean predictors X ∈ Rp, their intrinsic

regression relationship is quantified by modeling the conditional Fréchet means (Hein,

2009; Petersen and Müller, 2019) as

m⊕(x) = argminy∈ΩY
E[d2

Y (Y, y)|X = x]; x ∈ Rp. (1)

The Fréchet regression proposed by Petersen and Müller (2019) generalizes the global

least squares and the nonparametric local linear regression to fit the conditional

Fréchet mean. The globally linear approach targets an alternative formulation than (1)

given by

m̃⊕(x) = argminy∈ΩY
E[s(X, x)d2

Y (Y, y)], (2)

where the weight function s(X, x) = 1+(x−µX)
⊺Σ−1

X (X−µX) varies globally and lin-

early with the output points x ∈ Rp; µX and ΣX being the expectation and covariance

matrix for the predictors X.

Model (2) coincides with model (1) in the special case of multiple linear regression

with Euclidean responses and predictors. However, for a general metric space-valued

response Y ∈ ΩY , the above two targets are different, thus making the regression

relationship for general metric-valued data quite restrictive. Although the local re-

gression, which indeed targets (1) with an asymptotically negligible bias, is more

flexible, it is effective only when the dimension of the predictor is relatively low. As

this dimension gets higher, its accuracy drops significantly- a phenomenon known as

the curse of dimensionality. Recently Bhattacharjee and Müller (2021) developed a

single index Fréchet regression that projects the multivariate predictors onto a de-

sired direction parameter vector to form a single index, thus facilitating inference for

Fréchet regression. However, the model assumptions are still somewhat restrictive,
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and in general, the Fréchet regression framework only can accommodate Euclidean

predictors.

In this work, we propose a non-linear global object regression framework that can

accommodate both responses and predictors residing in arbitrary metric spaces. Our

main two contributions are listed as follows.

Firstly, as discussed before, the conditional Fréchet mean in (1) might be a signif-

icantly different target from the global Fréchet mean (2) proposed by Petersen and

Müller (2019), owing to the lack of linearity in a general abstract metric space. Hence

the interpretation or validity of such a “globally linear” model can be brought into

question. We propose a significant step up in bridging the discrepancy between two

targets and extending the global linear regression to a more general globally non-linear

object regression.

In order to answer this question, one first needs to ponder what a polynomial

regression model even looks like in a metric space. A convenient vehicle to link

random object data analysis to non-linear global RKHS (Reproducing Kernel Hilbert

Space) regression models, beyond linear or polynomial regression to an arbitrary

non-linear function, is achieved through weak conditional moments on d2
Y (Y, ω). Li

and Song (2022) first introduced this new statistical construct as a generalization of

conditional expectation based on Carleman operators and their induced functions.

The key idea of this approach for classical Euclidean data is that it replaces the L2

space for the projection that characterizes the conditional expectation by an arbitrary

Hilbert space, while still maintaining the unbiasedness of the regression estimate. We

define a random object regression model by extending this concept to the Weak

conditional Fréchet mean via a kernelized version of the predictors. The global linear

regression model by Petersen and Müller (2019) emerges as a special case of a linear

kernel.

Secondly, beyond scalar-or-vector-valued predictors, studying the relation between

two arbitrary random objects is also increasingly important. Unfortunately, not

much exists in the state-of-the-art literature in this context, barring special cases of

distribution-on-distribution regression (Chen et al., 2019, 2021; Ghodrati and Panare-

tos, 2022). Our proposed method accommodates more general predictors such as

random vectors, functions, or even object-valued predictors, as long as the predic-

tor space is rich enough to admit an RKHS embedding. We discuss the details of

constructing appropriate kernels to generate such RKHSs and study the relevant op-
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erators generated to achieve this goal.

The rest of the paper is organized as follows. Section 2 defines the preliminary

setup of the problem and focuses on the construction of an RKHS on the space

predictor objects. In Section 3, we define the weak condition moments for object

responses and predictors, establish the global non-linear object regression model and

study its connections to the global linear object regression framework. In Section

4, we propose a suitable estimator for the weak conditional Fréchet mean from the

observed data. In this vein, the construction of the underlying RKHS is discussed and

an M-estimation setting is devised. Section 5 establishes the asymptotic convergence

rates of the proposed methods. Simulation results are presented in Section 6 to show

the numerical performances of the proposed methods. In Section 7, we analyze a real

application of the proposed method for the mortality-vs-fertility distributions. All

proofs are presented in the Supplementary Material.

2 Preliminaries

Let (Ω,F , P ) be a probability space, and (ΩX,FX) and (ΩY ,FY ) be two measurable

metric spaces. Define X : Ω → (ΩX, dX) and Y : Ω → (ΩY , dY ) to be the random

objects. We denote the marginal distributions of X and Y by PX and PY , respectively,

the joint distributions of (X, Y ) by PXY , and the conditional distributions of Y |X by

PY |X. Further, let κX : ΩX × ΩX → R be a positive definite kernel and HX the

Reproducing Kernel Hilbert Space (RKHS) of real-valued functions on the predictor

space (ΩX, dX) generated by κX. We aim for direct modeling of the joint distribution

PXY by introducing the concept of the weak conditional Fréchet regression, which

involves the intrinsic geometry of (ΩY , dY ) as well as the appropriate operators defined

on the RKHS HX. In the next subsection, we will describe the construction of such

RKHS.

2.1 Random operators and their moments

A natural way to construct a reproducing kernel on (ΩX, dX) is to take a classical

radial basis function, such as the Gaussian radial basis kernel κX(s1, s2) = e−γ||s1−s2||,

and replace the Euclidean distance therein with the distance dX in the metric space.

Metric spaces that are of negative type can produce positive definite kernels of such

form. For example, Theorem 4 of Kolouri et al. (2016) states that Wasserstein space
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of absolutely continuous univariate distributions can be isometrically embedded in a

Hilbert space, and thus the Gaussian RBF kernel constructed on such space is positive

definite. For commonly observed random object data such as distributional data, the

construction of such kernels is well studied (Zhang et al., 2022).

Further, the RKHS HX generated by universal kernels, such as the Gaussian

radial basis function, is shown to be dense in L2(PX) (Sriperumbudur et al., 2010),

where L2(PX) be the class of square-integrable functions of X under the measure

PX . More generally, Proposition 2 of Zhang et al. (2021) shows that if (ΩX, dX) is a

complete separable metric space and there exists a separable Hilbert spaceH and a

continuous injection ρ : ΩX → H, then then the kernel function κX : ΩX × ΩX : R
defined by κX(s1, s2) = F (⟨ρ(s1), ρ(s2)⟩H) is a positive definite kernel, where F is

an analytic function whose Taylor series at zero has strictly positive coefficients.

Let κG(x, x
′) = exp(−γXd

2
X(x, x

′)) and κL(x, x
′) = exp(−γXd

2
X(x, x

′)) denote the

Gaussian and Laplacian kernels, respectively. Zhang et al. (2021) showed that both

κG and κL on a complete and separable metric space ΩX are positive definite and

universal, and the RKHS HX generated by such kernels is dense in L2(PX).

In order to capture the nonlinear features of a random element, we define the

covariance operator in the RKHSHX, which is similar to the construction in Fukumizu

et al. (2004); Lee et al. (2013); Li and Song (2017); Sang and Li (2022). See Li (2018)

Chapter 12.2 for a comprehensive review. For two generic Hilbert spaces H1 and

H1, let B(H1,H2) denote the class of bounded linear operators from H1 to H2. If

H1 = H1 = H, we denote B(H,H) as B(H). For any operator T ∈ B(H), let Y ∗

denote the adjoint operator of T , ker(T ) the kernel of T , ran(T ) the range of T , and

ran(T ) the closure of the range of T . For two members f and g of H, the tensor

product f ⊗ g is the operator on H such that (f ⊗ g)h = f⟨g, h⟩H for all h ∈ H.

Further, we define E(κX(·, X)), the expected value of X in H, as the unique

element in HX given by the Riesz representation theorem, such that

⟨f, E(κX(·, X))⟩HX
= E

[
⟨f, κX(·, X)⟩HX

]
, for all f ∈ HX. (3)

Define the bounded linear operator E [κX(·, X)⊗ κX(·, X)] , the second-moment op-

erator of X in HX, as the unique element in B(HX) by virtue of Riesz representation

theorem such that, for all f and g in HX,

⟨f, E [κX(·, X)⊗ κX(·, X)]⟩HX
= E

[
⟨f, (κX(·, X)⊗ κX(·, X))g⟩HX

]
. (4)
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By Cauchy-Schwartz inequality and Jensen’s inequality, it is guaranteed that items on

the right-hand side of (3) and (4) are well-defined. We denote by µX = E(κX(·, X)),

and MXX = E [κX(·, X)⊗ κX(·, X)]. The auto-covariance operator is defined as

ΣXX = MXX − µX ⊗ µX = E [(κX(·, X)− E(κX(·, X)))⊗ (κX(·, X)− E(κX(·, X)))] .

(5)

Using this, for all f, g ∈ HX, we have cov(f(X), g(X)) = ⟨f,ΣXXg⟩HX
.

The auto-covariance operator in (5) will be revisited while defining the weak con-

ditional Fréchet regression in Section 3. Before proceeding further, we briefly review

the notion of weak conditional moments in the context of random functions as Hilbert

space objects in the next subsection. This notion will then be generalized as weak

conditional Fréchet means for random metric-space valued objects in the later sec-

tions.

2.2 A brief review of weak conditional moments

For any Hilbertian objects U and V , the weak conditional expectation is defined as

the inducing function of a Carleman operator (Weidmann [36]). In the literature on

sufficient dimension reduction, the key advantage of this approach is that it replaces

the L2 -space for the projection that characterizes the conditional expectation by

an arbitrary Hilbert space while still maintaining the unbiasedness of the dimension

reduction estimate. Intuitively, the method proposed in Li and Song (2022) is reiter-

ated as follows. A feature space based on the random function V using a reproducing

kernel is constructed, and the projection of the random function U is carried out

onto the feature space through the tensor product U ⊗ U . The projections reduce to

conditional expectations if the feature space is sufficiently large, but if not, they still

provide valid estimates of the dimension reduction space.

To define more formally, let (Ω,F , P ) be a probability space. Let U : Ω → ΩU

and V : Ω → ΩV be Borel random functions. Further, let κV : ΩV × ΩV → R be a

positive definite kernel function and let HV be the reproducing kernel Hilbert space

generated by the kernel κV . Further, let HU be a Hilbert space and U ∈ HU . Let

MV U = E[κV (·, v) ⊗ U ] and MV V = E[κV (, V ) ⊗ κV (·, V )]. Under the assumption

that ker(MV V ) = {0} and ran(MV U) ⊂ ran(MV V ), MV V : HV → ran(MV V ) is a one-

to-one transformation. The first condition in the above assumptions is satisfied if

κV is a continuous kernel, while the second condition requires that, for any f ∈ HU ,
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MV Uf is sufficiently concentrated on the low- frequency components ofMV V , imposing

smoothness in the space. We define the Moore-Penrose inverse map M †
V V to be the

linear operator from ran(MV V ) to HV such that, for any f ∈ ran(MV V ), M
†
V V is the

unique g ∈ HV satisfying f = MV V g. Under the condition, ran(MV U) ⊂ dom(M †
V V ),

the operator RV U = M †
V VMV U is well defined. This operator is often referred to as

the regression opertor (Lee et al., 2016).

Definition 1 (Carleman ocperator) Let G be a set, M a Hilbert space of real-

valued functions on G, and A : H → M a linear operator for some other Hilbert

space H. If, for each y ∈ G, the linear functional

Ay : H → R, f 7→ (Af)(y)

is bounded, then we call A an extended Carleman operator. The Riesz representation

λA(y) of Ay is called the inducting function of A.

The above definition is slightly more general since any subset of the class of square-

integrable functions on G is not required to be a subspace of L2(PV ), the class of

square-integrable functions of V under its marginal measure PV . In this context,

such a subset of functions is taken as the RKHS HV , whose inner product is different

from that of L2(PV ).

Definition 2 (Weak conditional moments) If the regression operator RV U is a

Carleman operator, then the random element V 7→ λRV U
(V ), the inducing function of

the Carleman operator RV U is called the weak conditional moment of U given V and

is written as E[U V ].

By Weidmann (2012), Theorem 6.12, M †
V VA is a Carleman operator if it is a Hilbert

Schmidt operator, for any operator A that maps into the domain of M †
V V , which is

a reasonable assumption, as this amounts to imposing a type of smoothness in the

relation between U and V (Li and Song, 2017). In connection with the regression

operator, RV U , Li and Song (2022) and some of the references therein showed the

following result.

Lemma 1 If f ∈ HV , E(f(V )|U = ·) is a member of HU , and κU is a universal

kernel such that κU : ΩU × ΩU → R, then

RV Uf = E[f(V )|U = ·] + constant.
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By taking unconditional expectation on both sides of the above equality, we see that

the constant is E[(RV Uf)(U)]− E[f(V )], and we have the formula

E[f(V )|U = ·] = RV Uf − E[(RV Uf)(U)] + E[f(V )].

When κU is not universal, RV Uf − E[(RV Uf)(U)] + E[f(V )] is not the conditional

expectation. Nevertheless, Li and Song (2022) shows that it shares many properties

with the conditional expectation, particularly those pertaining to the regression on V

on U . Li and Song (2022) call RV Uf −E[(RV Uf)(U)] +E[f(V )] the weak conditional

expectation of f(V ) relative to HX, and denote it by E[f(V ) U ].

3 Weak conditional Fréchet mean

The above section is only discussed for a comprehensive understanding of weak con-

ditional moments in the special case of Hilbert space-valued data. More generally, we

want to draw motivation from this concept to extend it for metric-space valued object

data (X, Y ) ∈ (ΩX, dX)× (ΩY , dY ), as defined in Section 2, with RKHS (HX) embed-

ding in the predictor space ΩX via the positive definite kernel κX : ΩX × ΩX → R.
The flexibility of the above construct is particularly important for such random

object data, since attempting to estimate the conditional Fréchet mean function

E[d2
Y (Y, ω)|X] is often inefficient without assuming a structural form due to the curse

of dimensionality. The weak conditional expectation gives us an idea of performing

regression of Y on X when Y is a random object.

Definition 3 Let h : ΩX → ΩY be defined by

h(x) = argminy∈ΩY
E[d2

Y (Y, ω) X = x]

is called the weak Fréchet conditional expectation of Y given X, and denote it by

E(F )(Y X).

We take the weak Fréchet conditional expectation as the target of estimation in

our Fréchet regression. Let us now derive a more explicit form of E(F )(d2
Y (Y, ω) X).

Theorem 1 Suppose (ΩY , dY ) is a metric space, HX is an RKHS on ΩX generated

by a positive kernel κX : ΩX ×ΩX → R, and HZ is the RKHS generated by the linear

kernel κZ(z1, z2) = c+ zT
1 z2, where Z = d2

Y (Y, ω). Then, for any y ∈ ΩY ,

E[d2

Y (Y, ω) X = x] = E[d2

Y (Y, ω)] + ⟨κX(·, x)− µX,Σ
†
XXE[(κX(·, X)− µX)) d

2

Y (Y, ω)]⟩HX

(6)
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Consequently, if E[d2
Y (Y, ω)|X = ·] is a member of HX and κX is a universal kernel,

then

E[d2

Y (Y, ω)|X = x] = E[d2

Y (Y, ω)] + ⟨κX(·, x)− µX,Σ
†
XXE[(κX(·, X)− µX)) d

2

Y (Y, ω)]⟩HX
.

Define the following operators to quantify the interaction between the operator of

X in HX and the positive real-valued distance elements d2
Y (Y, ω) and dY (Y, ω) as

Σ(k)

XY (ω) = E [(κX(·, X)− µX) d
k

Y (Y, ω)] , for all ω ∈ ΩY ; k = 1, 2. (7)

Even though dk(Y, ω) do not represent measures of similarity as a kernel would do in

the context, as such ΣXY (ω) are not exactly the same as cross-covariance operators.

However, these operators quantify the association between the (mean-subtracted) ker-

nel embedding, which can be perceived as similarity measures in the predictor space,

and the distance between the responses and any other element in the corresponding

metric space. Our aim is to search over the latter metric space to find the minimizer

of the weighted expected distance in view of the weak conditional Fréchet expectation

defined in Theorem 1. In that sense, the aim is to still minimize a suitable version of

the expected error in Y , which is not explained by the predictors X. Henceforth, we

will call the above quantities pseudo-cross covariance operators, which will be useful

in the subsequent lemmas and theorems in the next sections.

Typically, for a positive definite κX, ΣXX is a compact operator whose eigenvalues

decay to 0, hence Σ†
XX is unbounded. However, it is reasonable to assume that

the regression operators R(1)

XY (ω) := Σ†
XXΣ

(1)

XY (ω) and R(2)

XY (ω) := Σ†
XXΣ

(2)

XY (ω) to be

bounded uniformly for all ω ∈ ΩY . These can be viewed as regression operators, due

to their similarity in appearance to the coefficients arising in multiple linear regression.

Reiterating from Theorem 1, the weak conditional Fréchet mean in (6) can be

rewritten in terms of the auto covariance and pseudo-cross covariance operators de-

fined in Section 2 as

E[d2Y (Y, ω)] + ⟨κX(·, x)− µX,Σ
†
XXΣ

(2)

XY (ω)⟩HX
.

Suppose the eigenvalue and eigenfunction sequence of ΣXX is given by {(λj, ϕj) : j =

1, 2, . . . }. By Mercer’s theorem, the spectral decomposition of the variance operator

ΣXX is given by

ΣXX =
∞∑
j=1

λjϕj ⊗ ϕj. (8)
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Further, under the assumption that E(κX(X,X)) < ∞ (see Assumption (A0) below),

ΣXX is a Hilbert-Schmidth operator and is of trace class, i.e,
∑∞

j=1 λj < ∞.

(A0) E(κX(X,X)) < ∞ and sup
ω∈ΩY

E(dk
Y (Y, ω)) < ∞ for k = 1, 2.

We further assume a degree of smoothness in the relation between X and Y , requiring

the output functions for the regression operator must be sufficiently concentrated on

the low-frequency components of ΣXX. We assume that

(A1) sup
ω∈ΩY

E (|ϕj(X)− E(ϕj(X))| dk
Y (Y, ω)) ≤ λ2

j , k = 1, 2.

i.e., R(k)

XY (ω) := Σ†
XXΣ

(k)

XY (ω); k = 1, 2 is a bounded operator uniformly for all ω ∈
(ΩY , dY ), in other words ran(Σ(k)

XY (ω)), which can possibly depend on ω is entirely

contained in the ran(ΣXX) uniformly across all possible ω ∈ ΩY , for k = 1, 2. Even

though Σ†
XX can be an unbounded operator., it never appears by itself but is always

accompanied by operators multiplied from the right to appear as a regression operator.

Condition (A1) guarantees that that the composite operators Σ†
XXΣ

(k)

XY (ω) is well-

defined, bounded and compact, uniformly for all ω ∈ ΩY , for k = 1, 2. This implies

that Σ†
XXΣ

(k)

XY (ω) must send all incoming functions into the low-frequency range of

the eigenspaces of ΣXX with relatively large eigenvalues uniformly for all ω ∈ ΩY , for

k = 1, 2. That is, Σ(k)

XY (ω) is smooth uniformly for all ω ∈ ΩY in the sense that its

outputs are low-frequency components of ΣXX, for k = 1, 2.

In the special case where κX is the linear kernel c+xT
1x2, E

(F )(d2
Y (Y, ω) X) reduces

to the objective function for global linear Fréchet regression. To prove this result,

we first introduce an isomorphism between ran(ΣXX) and Rp, where ΣXX and HX are

defined by the linear kernel. Su et al. (2023) proved the following result.

Proposition 1 Let HX be the RKHS generated by κX(x1, x2) = c + xT
1x2. Let ΣXX :

HX → HX be the covariance operator of X, and let ΣX be the matrix var(X). Let

H0 = ran(ΣXX). Then

1. H0 = span{(·)Ty : y ∈ Rp}.

2. Let T : H0 → Rp be the mapping (·)Ty 7→ y. Then T is an isomorphism.

3. TΣXXT
∗ = ΣX.

The following proposition shows how to invert the covariance operator ΣXX in the

linear kernel setting.
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Proposition 2 If ΣX is an invertible matrix then ΣXX is an invertible operator, and

Σ−1

XX = T ∗Σ−1

X T.

The next theorem shows that the global Fréchet linear regression introduced by Pe-

tersen and Müller (2019) is, in fact, the weak Fréchet conditional mean in the special

case when κX is taken to be the linear kernel.

Theorem 2 Suppose ΣX is invertible, κX and κY are the linear kernels. Then

E[d2

Y (Y, ω) X = x] = E {[1 + (x− EX)TΣ−1

X (X − EX)]d2

Y (Y, ω)} .

3.1 Existence of the weak Fréchet conditional means

When κX is any arbitrary kernel such as a linear kernel and is not necessarily a uni-

versal kernel, the weak conditional Fréchet mean h(x) = argmin
y∈ΩY

E(d2
Y (Y, ω) X = x)

is not same as the conditional Fréchet mean m(x) = argmin
y∈ΩY

E(d2
Y (Y, ω)|X = x). For

example, the target for the global Fréchet regression, which emerges as a special case

of the weak conditional Fréchet means corresponding to a linear kernel, is different

from the conditional Fréchet regression function E(d2
Y (Y, ω)|X = x). However, the

regression relationship between two random objects (X, Y ) ∈ ΩX × ΩY expressed

through the weak Fréchet conditional mean is interesting and worth investigating in

its own right. This alternative formulation is described through an RKHS embed-

ding in the predictor space, thus accommodating random objects lying in the general

metric space as a predictor. The characterization of the dependence between Y and

X is global and non-linear, and no bandwidth parameter is required to fine-tune the

regression function.

The existence of the weak conditional Fréchet mean is guaranteed when the re-

sponse lies in a compact metric space ΩY , as long as the function E(d2
Y (Y, ω) X = x)

is a continuous function of y. Beyond compactness, the existence and uniqueness of

the weak conditional Fréchet mean can be proved for commonly observed random

objects with the explicit forms of the minimizers available.

Definition 4 (Negative type metric space) The space (M,ρ) with a semi-metric

ρ is of negative type if for all n ≥ 2, z1, z2, . . . , zn ∈ M and α1, α2, . . . , αn ∈ R, with∑n
i=1 αi = 0, one has

∑n
i=1

∑n
j=1 αiαjρ(zi, zj) ≤ 0.
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Proposition 3 If ΩY is a negative type metric space and there is a continuous injec-

tive map ρ : ΩY → F for some underlying Hilbert space F , such that the image of ρ

is a closed and convex set, then the minimizer of the weak conditional Fréchet mean

exists and is unique.

Some examples of commonly observed random object data, where the explicit

solutions for the minimizers are available include the following.

Example 1: The space of univariate probability distributions G on R such that∫
R x

2G(x) < ∞, equipped with the Wasserstein-2 metric. For two such distributions

G1 and G2, the Wasserstein-2 metric between G1 and G2 is given by

d2

W (G1, G2) =

∫ 1

0

(G−1

1 (t)−G−1

2 (t))2dt, (9)

where G−1
1 and G−1

2 are the quantile functions corresponding to G1 and G2, respec-

tively. The weak conditional Fréchet mean for distributional objects endowed with

the Wasserstein-2 metric dW as defined above is given by

h(x) =argmin
Qω∈Q(ΩY )

E
(
d2

W (QY , Qω) X = x
)

=E(QY (t)) + ⟨κX(·, x)− µX, Σ†
XX E ((κX(·, X)− µX)QY (t))⟩HX

.

Example 2: The space of symmetric positive semi-definite matrices M endowed with

the Frobenius metric dF . For any two elements A,B ∈ (M, dF ), their Frobenius

distance is given by

d2

F (A,B) =
√
trace ((A−B)(A−B)T ). (10)

The weak conditional Fréchet mean for spd matrix objects equipped with the Frobe-

nius metric dF is given by

h(x) = argmin
y∈ΩY

E
(
d2

F (Y, ω) X = x
)
,

where h(x) has the (j, k)-th entry as

Bjk(x) = E(Yjk) + ⟨κX(·, x)− µX, Σ†
XX E ((κX(·, X)− µX)Yjk)⟩HX

,

where Yjk is the (j, k)-th entry of the positive semi-definite matrix response Y ∈
(ΩY , dF ). The existence, uniqueness, and explicit form of the weak conditional Fréchet
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mean can also be derived for other Euclidean and pseudo-Euclidean metrics such as

power metric, log-affine metric, Cholesky metric and so on (Dryden et al., 2010; Lin,

2019).

When the kernel κX is universal such as the Gaussian or Laplacian kernels, the

RKHS HX is rich enough so that the proposed model for the weak conditional Fréchet

mean can approximate the conditional Fréchet mean arbitrarily closely (see e.g., Li

and Song (2022)) since the RKHS HX is dense in L2(PX). In the case when the con-

ditional Fréchet mean falls within HX, the weak conditional Fréchet mean coincides

with the conditional Fréchet mean.

4 Estimation

In the last section, we have described the solution to the nonlinear object regression

framework at the population level. In the following, we implement the regression at

the sample level. The key steps involve the construction of the sample estimate for

the regression function as an M-estimator based on n i.i.d. observations (Xi, Yi)
n
i=1.

In order to quantify the sample objective function minimized by the regression esti-

mator, we need to express the underlying RKHS HX and the relevant auto covariance

and pseudo-cross covariance operators with a coordinate representation system (see,

e.g., Horn and Johnson (2012); Li (2018)).

4.1 Coordinate representation

Suppose that L1 is a finite dimensional linear space with basis B = {ξ1, ξ2, . . . , ξp}.
Then for any ξ ∈ L1, there is a unique vector (a1, a2, . . . , ap)

⊺ ∈ Rp such that ξ =∑p
i=1 aiξi. The vector (a1, a2, . . . , ap)

⊺ is called the coordinate of ξ with respect to B,
and denoted by [ξ]B. Throughout this section, we will use this notation to describe

coordinate representation. Next, we introduce the coordinate representation of a

linear operator between two (finite-dimensional) linear spaces. Suppose L2 is another

linear space with basis C = {η1, η2, . . . , ηq} and A is a linear operator from L1 L2.
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Then for any η ∈ L1, we have

Aξ = A

(
p∑

i=1

([ξ]B)i ξi

)
=

p∑
i=1

([ξ]B)i (Aξi)

=

p∑
i=1

([ξ]B)i

q∑
j=1

([Aξi]C)j ηj =

q∑
j=1

{(C[A]B) ([ξ]B)}j ηj,

where C[A]B is the q × p matrix with (i, j)th entry ([Aξj]C)i. The above equation

implies that [Aξ]C = (C[A]B)([ξ]B). Therefore we call the matrix C[A]B the coordinate

representation of the linear operator A with respect to the bases B and C. Similarly,

for two Hilbert spaces H1 and H2, with spanning systems B1 and B2, and a linear

operator A : H1 → H2, we use the notation B1
[A]B2

to represent the coordinate

representation of A relative to spanning systems B1 and B2.

4.2 Construction of the RKHS HX and Model Fitting

Recall that for a positive definite kernel defined on a set T × T denoted by κT .

Let KT be the m × m Gram matrix whole (k, l)-th entry is κT (νk, νl) for νk, νl ∈
T . Let HT be the RKHS generated by {κT (·, νk) : k = 1, . . . ,m}. Then using the

coordinate representation in Section 4.1, the inner product between any f, g ∈ HT

can be expressed as ⟨f, g⟩HT
= [f ]⊺KT [g].

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. observations of (X, Y ) ∈ ΩX ×ΩY . The RKHS

HX is spanned by {κX(·, Xi) : i = 1, . . . .n} equipped with the inner product

⟨f, g⟩HX
= [f ]⊺KX[g],

for any f, g ∈ HX, where KX is the n × n Gram matrix whose (i, j)th entry is

κX(Xi, Xj), i, j = 1, . . . , n.

At the sample level, we estimate ΣXX and ΣXY (ω) by replacing the expectations

E(·) with the sample moments En(·) with respect to the empirical measure whenever

possible. For example, we estimate ΣXX by Σ̂XX = En [(κX(·, X)− µ̂X)⊗ (κX(·, X)− µ̂X)]

= 1
n

∑n
i=1(κX(·, Xi)−µ̂X)⊗(κX(·, Xi)−µ̂X), where µ̂X = En(κX(·, Xi)) =

1
n

∑n
i=1 κX(·, Xi).

The sample estimate for Σ(k)

XY (ω) for any given ω ∈ ΩY is similarly defined as Σ̂(k)

XY (ω) =

En

[
(κX(·, X)− µ̂X)d

k(Y, ω)
]
= 1

n

∑n
i=1(κX(·, Xi)−µ̂X)d

k(Yi, ω), for k = 1, 2. Suppose,

the subspace ran(Σ̂XX) is spanned by the set BX = {κX(·, Xi)− En(κX(·, Xi)) : i = 1, . . . , n} .
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We then have the following coordinate representations of auto covariance and pseudo-

cross covariance operators, for any ω ∈ ΩY and for k = 1, 2,

BX
[Σ̂XX]BX

= n−1GX , [Σ̂(k)

Y X(ω)]BX
= n−1GX , BX

[Σ̂†
XX]BX

= n−1G†
X ,

where GX = QKXQ and G†
X is the Moore-Penrose inverse of GX via the Tikhonov-

regularized inverse (GX + ϵXIn)
−1 to prevent overfitting, where ϵX > 0 is a tuning

constant. Here Q denotes the projection matrix In − 1
n
1n1

T
n with Q2 = Q. For a

detailed discussion see e.g. Section 12.4 of Li (2018).

Now, we proceed to estimate the weak conditional Fréchet mean in (6). Recalling

the definition from Section 3,

h(x) = argmin
ω∈ΩY

J(ω), where

J(ω) = E[d2Y (Y, ω)] + ⟨κX(·, x)− µX,Σ
†
XXE[(κX(·, X)− µX) d

2

Y (Y, ω)]⟩HX
; (11)

we define the estimator

ĥ(x) = argmin
ω∈ΩY

Jn(ω), where

Jn(ω) =
1

n

n∑
i=1

d2Y (Yi, ω) + ⟨κX(·, x)− µ̂X, Σ̂
†
XX

1

n

n∑
i=1

(κX(·, Xi)− µ̂X) d
2

Y (Yi, ω)⟩HX

=
1

n

n∑
i=1

win(x)d
2
Y (Yi, ω), (12)

where win(x) = 1+ ⟨κX(·, x)− µ̂X, Σ̂
†
XX(κX(·, Xi)− µ̂X)⟩HX

. To obtain a more explicit

computable form of the above, it remains to identify the coordinate of κX(·, x)− µ̂X

with respect to the spanning system {κX(·, Xi) − µ̂X : i = 1, . . . , n}. Suppose that

[κX(·, x)− µ̂X ] = cx for some cx ∈ Rn. Then

⟨κX(·, x)− µ̂X , κX(·, Xi)− µ̂X⟩HX
= e⊺iKXcx −

1

n
(e⊺iKX1n)(1

⊺
ncx) = e⊺iKXQcx,

where ei denotes the vector whose ith component is 1 and all others are 0. Taking

i = 1, . . . , n, we have dx = KXQcx, where dx is the vector of length n with ith

component κX(Xi, x)− En(κX(Xi, x)). With the Tikhonov regularization, we obtain

the solution cx = Q(KX + ϵXIn)
−1dx. Thus, the empirical objective function in (12)

becomes

Jn(ω) =
1

n
h⊺
Y 1n + h⊺

YGX(GX + ϵXIn)
−1cx,

where hY is the vector with the i-th component d2
Y (Yi, ω), i = 1, . . . , n, and 1n =

(1, 1, . . . , 1)⊺.
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4.3 Tuning parameter selection

We use the general cross-validation criterion (Golub et al., 1979) to determine the tun-

ing constant ϵX involved in the Tikhonov-regularization of the inverse auto-covariance

operator Σ†
XX.

GCV(ϵX) =
1

n

n∑
i=1

d2
Y (Yi, Ŷi)

(1− tr[QGX(GX + ϵXIn)−1 + 1n1
⊺
n/n]/n)

2 , (13)

where Yi and Ŷi are respectively the observed and predicted responses for the i-th

subject, i = 1, . . . , n. The numerator of this criterion quantifies the prediction error

while the denominator controls the degree of overfitting. We minimize the criterion

over a grid {10−6, . . . , 10−1} to find the optimal tuning constants.

5 Convergence results

In this section, we develop the asymptotic convergence results for the proposed object

regression method. In particular, the convergence of the auto-covariance and pseudo-

cross-covariance operators with a suitable rate is established, which is used in turn

to show the convergence of the regression estimate using the M-estimation theory.

5.1 Convergence of regression operators

Recalling the definitions from section 2.1, µX = E(κX(·, X)) and ΣXX = E
[(
κX(·, X)−

E(κX(·, X))
)
⊗ (κX(·, X)− E(κX(·, X)))

]
are the mean and auto covariance operator

defined on the RKHS HX. The asymptotic properties of the empirical estimates of

the relevant quantities have been well-studied in the literature (see e.g., Sang and

Li (2022); Fukumizu et al. (2007); Lee et al. (2013). For completion, we list the

properties here

Lemma 2 Under Assumptions (A0) and (A1)

(1) ∥µ̂X − µX∥HX
= OP (n

−1/2).

(2) ∥Σ̂XX − ΣXX∥OP = OP (n
−1/2).

The consistent estimation for the pseudo-cross covariance operators defined in

Section 2.1 is derived uniformly over all elements ω ∈ ΩY , under the following as-

sumption on the intrinsic geometry and complexity of the response space (ΩY , dY ),

which can be quantified by a bound on the entropy integral of ΩY .
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(K0) The entropy integral of ΩY is finite, i.e.,

J :=

∫ 1

0

√
1 + logN(ϵ,ΩY , d)dϵ < ∞,

where N(ϵ,ΩY , d) is the covering number for the space ΩY using balls of radius

ϵ.

This assumption is satisfied by most of the commonly observed random objects such

as the space of univariate distributions with Wasserstein metric, space of positive

semi-definite matrices with a suitable choice of metric, data on the surface of an n−
sphere with the intrinsic geodesic metric, and so on (see e.g. Dubey and Müller (2019)

and the references therein).

Lemma 3 Under Assumptions (A0), (A1), and (K0),

sup
ω∈ΩY

∥Σ̂(k)

XY (ω)− Σ(k)

XY (ω)∥OP = OP (n
−1/2), k = 1, 2.

The consistent estimation for the regression operators is described in the following

lemma, under sufficient smoothness conditions on the regression relationship between

X and Y . We assume

(A2) For all j ∈ N, there is a 0 < β ≤ 1 such that sup
ω∈ΩY

E
(
|ϕj(X)− E(ϕj(X))| d(k)

Y (Y, ω)
)

≤ λ2+β
j , for k = 1, 2, i.e. there is a bounded linear operator SXY : HX → HX

such that sup
ω∈ΩY

Σ(1+β)†
XX Σ(k)

XY (ω) is a bounded linear operator uniformly over all

ω ∈ ΩY for k = 1, 2.

Suppose n−1/2 ≺ ϵn ≺ 0. For any β as defined in Assumption (A2), define

αn = ϵβn + ϵ−1
n n−1/2. (14)

Proposition 4 Under Assumptions (A0), (A1), (A2), and (K0),

sup
ω∈ΩY

∥Σ̂†
XXΣ̂

(k)

XY (ω)− Σ†
XXΣ̃

(k)

XY (ω)∥OP = OP (αn); k = 1, 2,

where αn is as given in (14).
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5.2 Estimation of weak conditional Fréchet mean

Having established the convergence of the pseudo-regression operators Σ†
XXΣ

(k)

XY , k =

0, 1, we proceed to derive the convergence results for the weak Fréchet conditional

mean in (12). We require the following assumptions regarding the intrinsic geometry

of the response space, which are the key to establishing the rate of convergence of

any M-estimator, namely, the assumption of well-separateness of the minimizer, an

upper bound on the entropy integral of the underlying metric space, and a local lower

bound on the curvature of the objective functions.

(R1) The weak conditional Fréchet means h(x) and ĥ(x) exist and are unique, the

latter almost surely. Further, the minimizer at the population level is well

separated. i.e., for any ϵ > 0,

inf
dY (ω,h(x))>ϵ

J(ω, x)− J(h(x), x) > 0.

(R2) LetBδ(h(x)) ⊂ ΩY be the ball of radius δ, centered at h(x) andN(ϵ, Bδ(h(x)), dY )

be its covering number using balls of radius ϵ. Then the entropy integral is com-

puted from the covering number given by

J = J(δ) :=

∫ 1

0

√
1 + logN(δϵ, Bδ(h(x)), dY )dϵ = O(1) as δ → 0.

(R3) There exist constants η > 0, C > 0, and β > 1, possibly depending on x ∈
(ΩX, dX), such that

J(ω, x)− J(h(x), x) ≥ Cdβ(ω, h(x)),

for any small neighborhood dY (ω, h(x)) < η.

The existence of the weak conditional Fréchet means depends on the nature of the

space, as well as the metric considered, as discussed in Section 3.1. Assumption (R1)

is commonly used to establish the consistency of an M-estimator; see Chapter 3.2

in Van der Vaart and Wellner (2000). In particular, it ensures that weak conver-

gence of the empirical process J̃n to the population process J , which in turn implies

convergence of their minimizers. The conditions on the covering number in Assump-

tion (R2) and curvature in Assumption (R3) arise from empirical process theory and

control the behavior of M̃n−M near the minimum, which is necessary to obtain rates
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of convergence. These assumptions are again satisfied for many random objects of

interest the common examples of random objects such as distributions, covariance

matrices, networks, and so on (see Propositions 1-3 of (Petersen and Müller, 2019)).

Theorem 3 Under assumptions (A0)- (A2), (K0), and (R1)- (R2), for any x ∈
(ΩX, dX),

dY (ĥ(x), h(x)) = oP (1).

Theorem 4 Under assumptions (A0)- (A2), (K0), (R1)- (R3), for any x ∈ (ΩX, dX),

dY (ĥ(x), h(x)) = OP (αn),

where αn is as given in (14).

For most commonly observed random objects β in Assumption (R3) is 2, yielding

an asymptotic rate of convergence for the M-estimator as OP (α
−1
n ). With a suitable

rate carried from the RKHS regression literature, one can derive the rate of con-

vergence as a function of the sample size n. For example, in Li and Song (2017),

αn ≈ n−1/4, which is improved upon by Sang and Li (2022) as αn ≈ n−1/3. This im-

proved rate can be incorporated in the rate of convergence for the weak conditional

Fréchet mean to yield an optimal rate of OP (n
−1/3).

6 Simulation Studies

In this section, we evaluate the numerical performances of the proposed object-on-

object regression method under different simulation settings for commonly observed

random objects.

In all of the following simulation scenarios, we consider Gaussian radial basis kernel

κG(y, y
′) = exp(−γXd

2(y, y′)) as a candidate to construct the underlying RKHS HX

in the predictor space. We choose the parameters γX as the fixed quantity

γX =
ρY

2σ2
G

, σ2

G =

(
n

2

)−1∑
i<j

d2(Xi, Xj), ρY = 1.

The same choices of tuning parameters were used in Lee et al. (2013); Li and Song

(2017); Zhang et al. (2022). The metric dX and dY is chosen appropriately to enhance

the interpretability of the results in each of the following scenarios considered.
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6.1 Scenario 1: Univariate distribution-on-object regression

In the first scenario considered, we have univariate distributional objects as responses

coupled with various types of random objects as predictors. Let (ΩY , dY ) be the met-

ric space of univariate distributions endowed with Wasserstein metric dY = dW , as

described in (9) Section 3.1. A sample of distributional object response, Y1, . . . , Yn

is observed in equivalent forms of CDF, quantile functions, or densities. However,

the distributions Y1, . . . , Yn are usually not fully observed in practice and the latent

curves need to be recovered from the discrete observations {Yij}mj=1, i = 1, . . . , n,

one encounters in reality. For this, we employ nonparametric smoothing with a suit-

able bandwidth choice implemented by the CreateDensity() function in the frechet R

package (Chen et al., 2020).

The random distributional response Y is generated conditional on X by adding

noise to the quantile functions, which are demonstrated in the following simulation

settings for various types of predictor objects. Generally, we let Y = N(ζ(x), η2(x)),

where the mean and variance of the response distribution are dependent on X. To

this end, the auxiliary distribution parameters µY and σY , given X, are indepen-

dently sampled such that E(µY |X = x) = ζ(x) and E(σ2
Y |X = x) = η2(x), and the

corresponding distribution is Y = µY + σYΦ
−1.

We set n = 200, 400, m = 50, 100 and generate n samples (Xi, {Yij}mj=1)
n
i=1. We

use half of them to train the predictors via the proposed object regression method

and then evaluate the discrepancy between the estimated and true responses using

the rest of the data set by computing the Wasserstein distance metric (9) between the

two distributions. The tuning parameter is determined by the methods described in

Section 4.3. The experiment is repeated B = 100 times, and averages and standard

errors (in parentheses) of the prediction error are computed as

RMPE :=
1

B

B∑
b=1

dW (Y test

b , Ŷ test

b ), (15)

where Y test
b and Ŷ test

b are the observed and predicted responses in the test set, respec-

tively, for the b-th replicate, b = 1 . . . , B.

Model-I.1 (Euclidean predictors): µY |X ∼ N((β⊺X)2, ν2
1) and σY |X ∼

Gamma((γ⊺X)2/ν2, ν2/(γ
⊺X)).

Model-I.2 (Euclidean predictors): After sampling the distribution parameters as

in the previous setting, the resulting distribution is then “transported” in Wasserstein
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space via a random transport map T , that is uniformly sampled from a family of

perturbation/ distortion functions {Tk : k ∈ ±1,±2, }, where Tk(x) = x−sin(kx)/|k|.
The transported distribution is given by T#(µY + σYΦ

−1), where T#p is a push-

forward measure such that T#p(A) = p ({x : T (x) ∈ A}), for any measurable function

T : R → R, distribution p ∈ (ΩY , dW ), and set A ⊂ R. We sample the random

transport map T uniformly from the collection of maps described above; p denotes

a Gaussian distribution with parameters ζ(x) = (β⊺X)2 and η2(x) = (γ⊺X)2. The

distributions thus generated are not Gaussian anymore due to transportation. The

Fréchet mean can be shown to remain at µY + σYΦ
−1 as before.

For Models I.1 and I.2, the Euclidean vector predictor X ∈ Rp is generated as

follows: (i) we first generate U1, . . . , Up from the AR(1) model with mean 0 and co-

variance matrix Σ = (0.5|i−j)i,j, and then (ii) generate Xj = 2Φ(Uj)− 1, j = 1, . . . , p,

where Φ is the c.d.f. of N(0, 1). We select ν2
1 = 0.1, ν2 = 0.25, β = (1,−2, 0, 1), and

γ = c(0.1, 0.2, 1, 0.3) in the above models. The performance of our method, denoted

by global nonlinear Fréchet regression (GNLFR), is compared with the globally lin-

ear Fréchet regression (GLFR) method by Petersen and Müller (2019) for varying

levels of the predictor dimension, sample size, and number of discrete observations

for each sample of distributions, namely p, n, and m, respectively. Table 1 summa-

rizes the results. The prediction error decreases generally corresponding to a lower

dimension p of the predictor, a higher sample size n, and a denser design (higher

m) over which the response is sampled. Across the board, our method outperforms

the GLFR method in terms of prediction accuracy. Especially, for Setting I.2 the

GNLFR method proves significantly better, which is not unexpected given the highly

non-linear data-generating mechanism for this setting.

For models I.3-I.5 below, we consider univariate distribution-on-distribution re-

gression.

Model-I.3 (Univariate distributions as predictors): µY |X ∼ N(exp(W 2
2 (X,µ1))+

exp(W 2
2 (X,µ2)), ν

2
1) and σY |X = 0.1.

Model-I.4 (Univariate distributions as predictors): µY |X ∼ N(exp(W 2
2 (X,µ1))

, ν2
1) and σY |X = Gamma(W 2

2 (X,µ2),W2(X,µ2)).

Model-I.5 (Univariate distributions as predictors): µY |X ∼ N(exp(H(X,µ1)),

0.22);σY |X = exp(H(X,µ2)).

In the above we let ν2
1 = 0.1, µ1 = Beta(2, 1) and µ2 = Beta(2, 3) and gener-

ate discrete observations from distributional predictors by {Xij}mj=1
i.i.d.∼ Beta(ai, bi),
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Table 1: Table showing the Monte Carlo mean (standard error) estimation errors

as per (15) for the proposed global nonlinear Fréchet regression (GNLFR) and the

global linear Fréchet regression by Petersen and Müller (2019) (GLFR), for Euclidean

predictors and univariate distributional responses in Scenario I.1-I.2. The lowest

number in a row corresponding to each data generating mechanism is highlighted.

I.1 (GNLFR) I.1 (GLFR) I.2 (GNLFR) I.2 (GLFR)

(p,n)\m 50 100 50 100 50 100 50 100

(4,200)
0.037

(0.012)

0.024

(0.016)

0.053

(0.021)

0.038

(0.014)

0.110

(0.081)

0.087

(0.070)

0.230

(0.012)

0.181

(0.011)

(10,200)
0.051

(0.019)

0.042

(0.015)

0.060

(0.017)

0.049

(0.020)

0.187

(0.031)

0.112

(0.023)

0.334

(0.045)

0.278

(0.031)

(20,200)
0.058

(0.018)

0.051

(0.018)

0.071

(0.020)

0.065

(0.019)

0.210

(0.029)

0.153

(0.028)

0.431

(0.025)

0.391

(0.022)

(4,400)
0.021

(0.009)

0.013

(0.009)

0.034

(0.010)

0.021

(0.011)

0.089

(0.021)

0.047

(0.022)

0.134

(0.020)

0.086

(0.021)

(10,400)
0.029

(0.010)

0.023

(0.011)

0.037

(0.009)

0.024

(0.008)

0.174

(0.019)

0.133

(0.020)

0.356

(0.012)

0.239

(0.014)

(20,400)
0.041

(0.013)

0.033

(0.011)

0.081

(0.015)

0.043

(0.015)

0.189

(0.016)

0.122

(0.016)

0.451

(0.013)

0.378

(0.015)

where ai
i.i.d.∼ Gamma(2, rate = 1) and bi

i.i.d.∼ Gamma(2, rate = 3). W2(·, ·) and H(·, ·)
denote, respectively, the Wasserstein-2 distance and the Hellinger distance between

two univariate distributional objects. The Hellinger distance between two Beta dis-

tributions µ = Beta(a1, b1) and ν = Beta(a2, b2) can be represented explicitly as

H(µ, ν) = 1−
∫ √

fµ(t)fν(t)dt = 1− B((a1 + a2)/2, (b1 + b2)/2)√
B(a1, b1)B(a2, b2)

,

where B(α, β) is the Beta function.

Note that by virtue of the Gram matrix of the underlying RKHS kernel κX, the

predictor space is now embedded into a Hilbert space, hence finding the weak con-

ditional Fréchet mean reduces to solving a constrained quasi-quadratic optimization

problem and projecting back into the solution space.

The performance of our method, denoted by global nonlinear Fréchet regression

(GNLFR), is compared with the distribution-on-distribution Wasserstein regression
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(WR) proposed by Chen et al. (2021) for varying choices of the sample size and

predictor dimension (n,m) (see Table 2). for varying levels of the predictor. The

performance of our method is evaluated for varying choices of (n,m) (see Table 2).

We observed a decrease in the RMPE as per (15) for all the settings as the sample

size n was increased, favorably for the denser design with a higher m.

Table 2: Table showing the Monte Carlo mean (standard error) estimation errors as

per (15) for univariate distribution-on-distribution regression in Scenario I according

to models I.3- I.5. The lowest number in a row corresponding to each data generating

mechanism is highlighted.

I.3 I.4 I.5

n\m 50 100 50 100 50 100

200
0.314

(0.121)

0.268

(0.091)

0.461

(0.110)

0.381

(0.125)

0.491

(0.110)

0.407

(0.099)

400
0.159

(0.092)

0.134

(0.086)

0.218

(0.160)

0.172

(0.155)

0.251

(0.181)

0.177

(0.120)

We next consider the scenario where X is a two-dimensional random Gaussian dis-

tribution in Models I.6-I.7. Similar data generation mechanism was followed in Zhang

et al. (2022).

Model-I.6 (Multivariate distributions as predictors): µY |X ∼
N(exp(W2(X,µ1)), ν

2
1) and σY |X = 0.1, with µ1 ∼ N((−1, 0)⊺, diag(1, 0.5)).

Model-I.7 (Multivariate distributions as predictors): µY |X ∼
N(exp(W2(X,µ1)), ν

2
1) and σY |X = τ ⊺1Λτ2, with µ1 ∼ N((−1, 0)⊺, diag(1, 0.5)); τ1 =

(1/
√
2, 1/

√
2)⊺, τ2 = (1/

√
2,−1/

√
2)⊺, Λ = diag(λ1, λ2), where (λ1, λ2)|X ∼

N(W2(X,µ2)(1, 1)
⊺, 0.25I2), µ2 ∼ N((0, 1)⊺, diag(0.5, 1)).

When computing W2(X,µ1) and W2(X,µ2), we use the following explicit repre-

sentations of the Wasserstein distance between two Gaussian distributions:

W 2
2 (N(m1,Σ1), N(m2,Σ2)) = ||m1 −m2||2 + ||Σ1 − Σ2||F , (16)

Table 3 shows a lower RMPE for the less complex setting I.6, while the performance

of the method improves for higher n,m as before.

In Model I.8, Hilbertian random functions are taken as predictor objects coupled
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Table 3: Table showing the mean and s.e. (in parenthesis) of the prediction errors as

per (15), for multivariate distributions as predictors coupled with univariate distri-

butions as responses, as described in Models I.6-I.7 in Scenario I. The lowest number

in a row corresponding to each data-generating mechanism is highlighted.

I.6 I.7

n\m 50 100 50 100

200 0.619 (0.110) 0.534 (0.100) 0.719 (0.142) 0.578 (0.131)

400 0.467 (0.091) 0.388 (0.092) 0.635 (0.110) 0.541 (0.112)

with univariate distribution responses, where the distribution of the response varies

conditional on the predictor values as before.

Model-I.8 (Random functions as predictors): The predictor trajectories X

and associated noisy measurements were generated as follows. Suppose that the

simulated process X has the mean function µX(s) = s + sin(s), with covariance

function constructed from two eigenfunctions, ϕ1(s) =
√
2 sin(2πks) and ϕ2(s) =√

2 cos(2πks), 0 ≤ s ≤ 1. We chose λ1 = 1, λ2 = 0.7 and λk = 0 for k ≥ 3, as

eigenvalues, and the FPC scores ξk; (k = 1, 2) were generated from N(0, λk). Using

the Kerhunen-Loéve expansion the predictor process is then given by X(s) = µX(s)+∑∞
k=1 ξkϕk(s). To adequately reflect both a dense design and an irregular/sparse

measurement paradigm, we assume that there is a random number Ni of random

measurement times for Xi for the i-th subject, which are denoted as Si1, . . . , SiNi

and contaminated with measurement errors ϵij, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n. The errors

are assumed to be i.i.d. with E(ϵij) = 0 E[ϵ2ij] = σ2
X = 0.1, and independent of

functional principal component scores ξik that satisfy E[ξik] = 0, E[ξikξik′ ] = 0 for

k ̸= k′, and E[ξ2ik] = λk. Thus, for the i-th sample, the predictor measurement with

noise is represented as Uij = µX(Sij) +
∑∞

k=1 ξikϕk(Sij) + ϵij, i = 1, . . . , n, j =

1, . . . , Ni. The data generation mechanism above is similar to Yao et al. (2005) and

both a sparse and a dense grid of observation are considered with Ni = 50 and

Ni ∈ {3, . . . , 5}, respectively. Finally, the response as a univariate distribution is

constructed as Y ∼ N(µY , σY ), and the auxiliary parameters conditional on X(·) are
generated independently as µY |X ∼ N((ξ1, ξ2)

⊺diag(λ1, λ2)(1,−1), ν2
1) and σY |X =

0.1.

Again, it is evident from Table 4, that the method yields better prediction error

when the sample size and number of discrete observations per sample in the response
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is high, favorable for the dense design paradigm for the predictor functions.

Table 4: Table showing the average prediction error as per (15) along with the stan-

dard error for Hilbertian objects as predictors and univariate distributions as re-

sponses, as described in Models I.8 under sparse and dense predictor design. The

lowest number in a row is highlighted.

I.8 (dense design) I.8 (sparse design)

n\m 50 100 50 100

200 0.334(0.051) 0.270 (0.049) 0.483 (0.130) 0.379 (0.124)

400 0.211 (0.031) 0.176 (0.032) 0.410 (0.022) 0.347 (0.022)

6.2 Scenario 2: Multivariate distribution-on-object regres-

sion

We now consider the scenario where both X and Y are two-dimensional random

Gaussian distributions. The construction of the kernel κX is done using the sliced

2-Wasserstein distance, which is obtained by computing the average Wasserstein dis-

tance of the projected univariate distributions along randomly picked directions. To

define formally,

Definition 5 (Sliced Wasserstein metric) let µ1 and µ2 be two measures in Pp(M),

the set of Borel probability measures on (M,B(M)) that have finite p−th moment and

is dominated by the Lebesgue measure on Rd, with M ⊂ ofRd, d > 1. Let Sd−1 be

the unit sphere in Rd. For θ ∈ Sd−1, let Tθ : Rd → R be the linear transformation

x 7→ ⟨θ, x⟩. Further, let µ1 ◦ T−1
θ and µ2 ◦ T−1

θ be the push-forward measures by the

mapping Tθ. The sliced p−Wasserstein distance between µ1 and µ2 is then defined by

SWp(µ1, µ2) =

(∫
Sd−1

W p
p (µ1 ◦ T−1

θ , µ2 ◦ T−1

θ )dθ

) 1
p

. (17)

For p = 2, Kolouri et al. (2016) show that the square of sliced Wasserstein distance

is conditionally negative definite and hence that the Gaussian RBF kernel defined as

κX(x, x
′) = exp(−γXSW

2
2 (x, x

′)) is a positive definite kernel.

We generate discrete observations for the predictor distributions Xi, i = 1, . . . , n

given by {Xij}mj=1
i.i.d.∼ N(ai(1, 1)

T , biI2), where ai
i.i.d.∼ N(0.5, 0.52) and bi

i.i.d.∼ Beta(2, 3).
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For computing the Gram matrix associated with the multivariate predictor distribu-

tion supported on M ⊂ Rd, d > 1 the sliced Wasserstein distance is estimated using

a Monte Carlo method as

SW2(µXi
, µXk

) ≈

(
1

L

L∑
l=1

W 2
2 (µXi

◦ T−1

θ , µXk
◦ T−1

θ )

) 1
2

,

where µXi
= 1

m

∑m
j=1 δXij

is the empirical measure for the i−th sample, i = 1, . . . , n,

{θl}Ll=1 are i.i.d. samples drawn from the uniform distribution on Sd−1 ⊂ Rd. The

approximation error depends on the number of Monte Carlo samples L. In our sim-

ulation settings, we set L = 50.

The random responses Y = N(µY ,ΣY ), where µY ∈ R2 and ΣY ∈ R2×2 are then

generated according to the following models.

Model-II.1 (Multivariate distributions as predictors): µY |X ∼
N(W2(X,µ1)(1, 1)

⊺, I2) and ΣY |X = diag(1, 1).

Model-II.2 (Multivariate distributions as predictors): µY |X ∼

N(W2(X,µ1)(1, 1)
⊺, I2) and ΣY |X = ΓΛΓ⊺, where Γ =

(
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

)
, Λ =

diag(λ1, λ2) with (λ1, λ2)|X
i.i.d.∼ tGamma(W 2

2 (X,µ2),W2(X,µ2), (0.2, 2)), where µ1

and µ2 are two fixed measures defined by µ1 = N((−1, 0)⊺, diag(1, 0.5)) and µ2 =

N((0, 1)⊺, diag(0.5, 1)), and tGamma(α, β, (r1, r2)) is the truncated gamma distribu-

tion on range (r1, r2) with shape parameter α and rate parameter β. The Wasserstein

distance between the bivariate Gaussian distributions is computed as per (16).

Since the dimension d of the random probability measures that we study here is

more than 1, one does not have an analytic form for the barycenter and the opti-

mization algorithms to obtain it are complex, in contrast to the case d = 1, where

the quantile representation of Wasserstein distance leads to an explicit solution via

the L2 mean of the quantile functions. The computation of Wasserstein barycen-

ters in multidimensional Euclidean space has been intensively studied (e.g., Rabin

et al. (2012); Álvarez-Esteban et al. (2016); Dvurechenskii et al. (2018); Peyré et al.

(2019), and one of the most popular methods utilize the Sinkhorn divergence (Cu-

turi, 2013), which is an entropy-regularized version of the Wasserstein distance that

allows for computationally efficient solutions of the barycenter problem, however at

the cost of introducing a bias, as is common for regularized estimation. Due to the

gain in efficiency, we adopt this approach in our implementations using the R package

WSGeometry (Heinemann and Bonneel, 2021).
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Using the same choices for n, m, and the tuning parameters, we again split the

data into a training and a test set, and use the training set to implement the proposed

object regression method at the output predictor points to predict the response in

the testing set. The whole process is repeated B = 100 times and the prediction error

computed between the observed and predicted bi-variate distributional responses in

the test set using the average Sliced Wasserstein distance between them, as per (17).

The mean and standard error of this root mean prediction error is shown in Table 5,

where a similar pattern of decreased RMPE for a combination of higher sample size

and denser observation grid for the paired sample of distribution is noted.

Table 5: Table showing the Monte Carlo mean (standard error) prediction errors for

Scenario II. The lowest number in a row is highlighted across different model settings.

II.1 II.2

n\m 50 100 50 100

200 0.620 (0.134) 0.442 (0.130) 0.811 (0.200) 0.693 (0.177)

400 0.319 (0.094) 0.178 (0.092) 0.543 (0.160) 0.329 (0.152)

6.3 Scenario 3: SPD matrix object-on-object regression

A common type of random object encountered in brain imaging studies is functional

connectivity correlation matrices, which are positive semi-definite symmetric matri-

ces. Let (ΩY , dF ) be the space of r × r symmetric positive definite (SPD) matrices

endowed with Frobenius distance dF (Y1, Y2) = ||Y1 − Y2||F as defined in (10) in Sec-

tion 3.1. Two simulation scenarios are considered as follows.

Model-III.1 (Euclidean predictors): The real-valued predictors Xi are inde-

pendently sampled from a Beta(1/2, 2), while the SPD matrix responses Yi con-

ditional on Xi are generated according to the model Yi = ỸiỸ
T
i , with Ỹi|Xi =

µ(Xi) + [Σ(Xi)]
−1/2Zi, where for a fixed dimension r, the mean vector µ(x) has

components µj(x) = bj − 2(x − cj)
2, j = 1, . . . , r. Here bj ∼ U(2, 4) and cj ∼

U(0, 1), and Zi are sampled independently of Xi as a standard r−dimensional Gaus-

sian random vector. the covariance Σ(x) is formed by generating a r × r ma-

trix A with independent N(0, 0.5) random variables in each entry, then computing

S = 0.5(A + AT ). A second r × r matrix V is generated with elements drawn

independently as U(0, 0.5), from which θ = 0.5(V + V T ) is computed. Finally,
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with Exp denoting matrix exponentiation and ⊙ the Hadamard product, we form

Σ(x) = (x+ 2x3)Exp[S ⊙ sin(2πθ(x+ 0.1))].

Model-III.2 (SPD matrix objects as predictors): The predictors are now them-

selves SPD matrices. This is generated as the covariance matrix computed from a

p-variate Gaussian random vector with independent components each with mean 0

and variance 1 for each sample. The predictors are projected down on a desired direc-

tion vector β whose each component βj ∼ U(0, 1), j = 1, . . . , p to compute X̃i = Xiβ.

Here, we choose p = 5. Now the response matrices are generated as before in Model

III.2 conditional on X̃i.

In order to apply the proposed method, again the Gaussian RBF kernel given by

κX(x, x
′) = exp(−γXd

2
F (x, x

′) is taken to compute the Gram matrix in the predic-

tor space, with the tuning parameter chosen as before. From a sample (Xi, Yi)
n
i=1

the minimization in (12) can be reformulated by setting ĥ(x) = 1
n

∑n
i=1 win(x)Yi and

computing the correlation matrix which is nearest to the matrix ĥ(x), which is im-

plemented by the alternating projections algorithm via the nearPD() function in the

Matrix R package.

We compare performances of the proposed method for a combination of sample

size and the dimension of the response matrices given by n and r, respectively, by

computing the Frobenius distance between the true and the predicted SPD matrix

responses in the test set, using the model fit on the training set, as described before.

The first two columns of Table 6 display the average prediction error across 100

replications of the above process. Our method fares better for increased sample

size, while the dimension of the response SPD matrices is lower in both simulation

scenarios.

Table 6: Table showing the Monte Carlo mean (standard error) estimation errors for

Scenarios III and IV. The lowest number in a row is highlighted across different model

settings.

III.1 III.2 IV.1

n\r 5 20 5 20 5 20

200
0.119

(0.041)

0.275

(0.040)

0.226

(0.130)

0.786

(0.110)

0.161

(0.011)

0.235

(0.031)

400
0.048

(0.037)

136

(0.035)

0.127

(0.110)

0.502

(0.097)

0.079

(0.012)

0.145

(0.029)
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6.4 Scenario 4: Network object-on-object regression

Model-IV.1 (Euclidean predictors): Let G = (V,E) be a simple (with no self-

loops), weighted, undirected network with a set of nodes V = {v1, . . . , vr} and a set

of edge weights E = {wij : wij ≥ 0, i, j = 1, . . . , r}, where wij = 0 indicates vi and vj

are not connected and wij > 0 otherwise, with wij < M for some M > 0. A network

can be uniquely represented by its graph Laplacian L = (lij), where lij = −wij if i ̸= j

and lij =
∑

k ̸=i wik if i = j, for i, j = 1, . . . , r. The space of graph Laplacians is given

by Lr = {L = (lij) : L = L⊺, L1r = 0r, −W ≤ lij ≤ 0 for some W ≥ 0 and i ̸= j},
where 1r and 0r are the r-vectors of ones and zeroes, respectively. Note that Lr is

not a linear space, but a bounded, closed, and convex subset in Rr2 of dimension

r(r−1)/2. Owing to the fact that x⊺Lx ≥ 0 for all x ∈ Rr and L ∈ Lr, it can be seen

as a metric space of positive-semidefinite matrix objects, equipped with a suitable

choice of metric such as the Frobenius or power metric.

To assess the performance of our proposed methods, we consider the space (Lr, dF ),

where dF is the Frobenius metric as per (10). The data generation mechanism is as

follows. Denote the half vectorization excluding the diagonal of a symmetric and cen-

tered matrix by vech, with inverse operation vech−1. By the symmetry and centrality,

every graph Laplacian L is fully known by its upper (or lower) triangular part, which

can then be vectorized into vech(L), a vector of length d = r(r− 1)/2. We construct

the conditional distributions FL|X by assigning an independent beta distribution to

each element of vech(L). Specifically, a random sample (β1, . . . , βd)
⊺ is generated us-

ing beta distributions whose parameters depend on the scalar predictor X and vary

under different simulation scenarios. The random response L is then generated con-

ditional on X through an inverse half vectorization vech−1 applied to (β1, . . . , βd)
⊺.

The the true regression function m(x) is defined as m(x) = vech−1(−x, . . . ,−x), L =

vech−1(β1, . . . , βd)
⊺, where βj

i.i.d.∼ Beta(X, 1−X). To ensure that the random response

L generated in simulations resides in Lr, the off-diagonal entries −βj j = 1, . . . , d,

need to be nonpositive and bounded below. Thus we choose βj
i.i.d.∼ Beta(X, 1−X).

The scalar predictor Xi are randomly sampled from a Unif(0, 1) distribution to ob-

tain the samples of pairs (Xi, Li), i = 1, . . . , n, setting r = 5, 20, and following the

above procedure. The prediction error w.r.t the Frobenius metric is shown in the

rightmost column of Table 6. The method performs better for higher n and lower r.
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7 Data Analysis

In this application, we explore the relationship between the distribution of age-at-

death and that of the mother’s age at birth at a country level. Going beyond summary

statistics such as mortality or fertility rate, viewing the entire distributions as samples

of data is more informative and insightful to understanding the nature of human

longevity and its dependence on relevant predictors. The data is obtained from the UN

World Population Prospects 2019 Databases (https://population.un.org). For

this analysis, we focus on n = 194 countries over the period of time 2015−2020. The

mortality data is available in the form of life tables over the age interval [0, 110] (all in

years) while the number of births is categorized by the mother’s age every five years

over the age bracket [15, 50]. We used bin widths equal to 5 years to construct the

histograms for the mortality and fertility distributions, respectively, and proceeded

to obtain the smooth densities by applying local linear regression using the frechet

package at the country level. The domains of the age-at-death and mother’s age-at-

birth densities are [0, 110] and [15, 50] years, respectively. The densities are assumed

to lie in the space of univariate distributions equipped with the Wasserstein metric

(ΩY , dW ) in (9). Figure 1 shows the sample of densities observed.
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Figure 1: Visualization of distributional objects represented as densities of age at

death and mother’s age at birth for a sample of 194 countries.
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We applied the proposed object-on-object regression method with age-at-death

densities as responses and mother’s age-at-birth densities as predictors to compare

the evolution of mortality distributions among different countries. We show the leave-

one-out prediction results together with the observed distributional predictors and

responses in Figure 2 for a select few countries, which showcases different patterns of

mortality change over changes in the predictor distribution. The Wasserstein distance

between the observed and predicted distributions is also shown. Specifically, we

selected the countries Bangladesh, Argentina, the USA, Japan, the UK, and Norway,

ordered by the lowest to the highest value of the mode of the mother’s age-at-death

densities. Both the observed and predicted age-at-death densities across the panels

from left to right are seen to be more right-shifted, indicating increased longevity

corresponding to a higher age at birth for the mother. Further, for Japan, Norway, and

the USA, the rightward mortality shift is seen to be more expressed than suggested

by the prediction, indicating that longevity extension is more than anticipated, while

the mortality distribution for the UK seems to shift to the right at a slower pace than

predicted, leading to a relatively larger WD with a value of 0.8 between the observed

and predicted response. In contrast, the regression fit for Argentina and Bangladesh

are quite accurate.

The effect of the mother’s age-at-birth is elicited in Figure 3a, where the model is

fitted for varying levels of the mode of the predictor distribution. The fitted densities

are color coded such that blue to red indicates smaller to larger values of the mode of

the age-at-birth densities. We find that lower age-at-birth of the mother is associated

with left-shifted age-at-death distributions in general, while modes at higher age-at-

birth correspond to a shift of the mode of the age-at-death toward the right. Child

mortality has an association with both low and high values of age-at-birth for the

mother, which concurs with the observations made earlier.

The fit of the model is further demonstrated by computing the estimation error by

virtue of the residual map for the i-th subject, Ti : ΩY → ΩY , defined as the optimal

transport map Ti = νi#ν̂i, that pushes forward the observed response νi to the fitted

value ν̂i. Using the theory of optimal transport for univariate distributions (Villani

et al., 2009), this map can be explicitly computed as Ti = Qν̂i ◦ Fνi , where Qν̂i and

Fνi are, respectively, the quantile function and the CDF of the distributions ν̂i and

νi. Using these residual maps one can obtain an analog of the “residual plot” in the

classical regression case, compared to the identity map. Looking at the deviation
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Figure 2: Visualization of distributional objects represented as densities of age at

death and mother’s age at birth for a sample of 194 countries.

from the identity map one can see in which parts the support of the distributions,

the model provides a good fit, and where less so and the departure from the identity

can serve as a diagnostic tool for the validity of the model. Note that, contrary to

classical regression, where the residuals add up to zero by construction, the residual

maps are not constrained to have a mean equal to the identity.

The residual maps computed for each of the 194 countries are plotted in Figure 3b.

One can see that the pointwise variability is much more prominent for younger ages

and decreases for progressively older ages, indicating many other plausible factors

affecting mortality at younger ages. The identity map is overlaid in black. The mean
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(b) Residual maps corresponding to n = 197

countries are plotted in gray, with specific

countries highlighted. The identity map

and the average residual map are overlaid

in black and red, respectively.

of residuals plotted in red lies very close to the identity map, which provides evidence

in support of the validity of our model. The residual maps of the specific countries

considered in Figure 2 are highlighted. Similar patterns of right-shifted distributions,

especially near the age-at-death [15, 40] years are observed for the highlighted coun-

tries. For example, while the evolution of the mortality distributions for Japan and

the USA can be viewed as mainly a rightward shift over calendar years, this is not

the case for the UK, where compared with the fitted response, the actual rightward

shift of the mortality distribution seems to be accelerated for those above age 65, and

decelerated for those below age 65.

To evaluate the out-of-sample prediction performance of the method, we randomly

split the dataset into a training set and a test set, and use the fits obtained from the

training set to predict the responses to the test set using only the predictors present

in the test set. As a measure of the efficacy of the fitted model, we compute the root

mean squared prediction error (RMPE) as the Wasserstein discrepancy between the

observed and the predicted distributions in the test set. We repeat the process 100

times to obtain the average RMPE, which comes out low (0.693 with a standard error

of 0.151), supporting the efficacy of the model.
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8 Discussion

In this paper, we have proposed a nonlinear global object-on-object regression method

based on the intrinsic geometry of the metric space where the responses reside cou-

pled with suitable linear operators defined via the reproducing kernel Hilbert space

on the predictor space. This contribution is one of the first to model the regression re-

lationship between metric-valued objects, beyond scalar-or-vector-valued predictors.

Further, the lack of linearity in an abstract metric space can result in a significant

difference between conditional and globally linear Fréchet means proposed by Pe-

tersen and Müller (2019), leading to questions about the validity of such globally

linear models. To address this, we introduce a novel method extending global linear

regression to a general global non-linear object regression. We employ generalized

weak conditional Fréchet moments as a way to link random object data analysis to

non-linear global RKHS regression models, allowing for arbitrary non-linear functions

beyond linear or polynomial regression.

The concept of weak Fréchet moments can be easily extended to Fréchet median

or as a minimizer of Huber loss, by substituting E[d2
Y (Y, ·) X] by E[ρY (Y, ·) X], for

any appropriate convex loss function ρY in the metric space (ΩY , dY ), depending on

the context and interpretation of the problem. This calls for future research. The

selection of a suitable metric is also an open problem.

Further, the rate of convergence of the proposed estimator is derived as ≈ n−1/4,

which entails from the work of Li and Song (2017). This rate can be further improved

using a suitable rate carried out from the RKHS regression literature.
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