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Abstract

We propose a network-based multi-compartment emulator for the COVID-19 pandemic

spread by accounting for various epidemiological factors, and different intervention options

like lockdown, testing and vaccination. Our model allows migrations across a network of

nodes representing different population centers or strata. The focus is on making optimal

decisions which, by making a meaningful assessment of the costs due to deaths, lockdowns

and the capacity of the healthcare system, minimize the economic impact of the pandemic.

Our results suggest that a combination of high rate of testing and rapid vaccination is very

effective in bringing the pandemic under control quickly and economically.
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1 Introduction

The ongoing COVID-19 pandemic has posed one of the greatest challenges to humanity in recent

times. The human cost in terms of lives lost to the pandemic has been staggering, as well as

the economic cost for mitigation. Even though arrival of effective vaccines at the end of 2020

has raised hopes substantially in terms of finally bringing an end to the pandemic, inadequate

vaccine availability coupled with distribution issues have contributed to the repeated surges at

a global level. All of these have raised debates about the relative effectiveness of measures such

as increased diagnostic testing and vaccination coupled with intervention measures. The latter

includes restricting the social mobility by imposing lockdowns and strict masking mandates. The

economic impact of various measures undertaken by governments brings about the unfortunate

choice between saving lives versus preserving collective economic well-being (see e.g. Mbwogge

(2021), Cirakli et al. (2021), Bubar et al. (2021), Susskind and Vines (2020), Prem et al. (2020),

Soltesz et al. (2020)). Prioritizing the latter resulted in a few countries initially attempting to

achieve “herd immunity” through unfettered propagation of virus in the community, typically

with disastrous consequences for public health, and at no small cost to the economy (Randolph

and Barreiro (2020), Kwok et al. (2020), Brett and Rohani (2020)).

These facts obviate the paramount importance of bringing all the elements – epidemiological,

interventionist and economic – together in forming a policy decision, at a regional or national

level. In addition, for an effective policy, it is necessary to also take into account factors like the

intrinsic capacity of the healthcare system and differential levels of vulnerability to the disease

among different segments of the population. However, in spite of voluminous research in the

direction of both tracking and predicting the course of the pandemic, there is relatively little work

addressing the question of appropriate policy decisions in terms of adopting specific intervention

measures, while incorporating the different contributing factors as well as the economic impact.

The focus of this study is to find a policy decision in the form of an optimal degree of social
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distancing, typically executed through a combination of lockdown and physical distancing. This

optimal decision is obtained by minimizing a cost function that aims to limit total mortality

and severe illness, consistent with the ultimate objective of most vaccine development (also see

Ghosh (2021), Ghosh and Halder in this volume), while also being responsive to the economic

costs of lockdown, under existing constraints in terms of the capacity of the healthcare system.

The cost is aggregative over a fixed time horizon. We also investigate the impact of various rates

of testing and vaccination, as well as different levels of migration.

In order to achieve this, we introduce a discrete-time deterministic dynamic model for the

disease dynamics on a network, the nodes of which represent different geographical entities,

or population segments, with differential levels of vulnerability to the disease. At the level of

individual nodes, this is a compartmental model akin to SIR (Susceptible-Infected-Recovered)

or SEIR (Susceptible-Exposed-Infectious-Removed) models popularly used in modeling the pan-

demic (see e.g. Tolles and Luong (2020), Giordano et al. (2020)). However, it incorporates the

effects of migration (Kucharski et al., 2020) as well as social distancing on the dynamics (Badr

et al., 2020). Moreover, the model admits the effect of testing and quarantining people, as

well as vaccination. Specific rate parameters associated with the model are chosen by making

use of analyses performed on the COVID-19 pandemic data in the USA in a companion paper

(Bhattacharjee et al., 2021). Therefore, the model is expected to serve as a realistic emulator of

this complex epidemiological process. The cost function for optimization, admittedly limited in

its scope, is set as a sum of the loss of economic output resulting from deaths from the disease,

and that from the spells of lockdown.

We perform a comprehensive set of simulations that idealize different scenarios and com-

pare the corresponding optimal policy choices and their human and economic costs. The main

conclusion of our analyses is that there is no stand-alone measure that can bring the pandemic

under control within a reasonable time frame. Rather, it is necessary to combine a set of policy

measures to limit the human and economic costs to a low level. Even then, there may be a
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Compartments Parameters
Unobservable: Epidemilogical: (Transition rates) Intervention:
S Susceptible γk Asymptomatic to Symptomatic ωjk Daily rate of migration from node
J Infected but asymptomatic αk Asymptomatic to Recovered j to k.
G Uninfected individuals quaran- ζk Recovery from symptomatic ωjk e(β0k+β1k∆Djt)/

{
1 + e(β0k+β1k∆Djt)

}
tined due to a false positive test without hospitalization ιkt Infection rate at node k at time t

Observable ξk Symptomatic to Hospitalization ιkt ιcµktJkt/(Skt + Jkt +Rkt + IVkt)
I Symptomatic individuals ρk Hospitalization to Recovered µkt µkκ

2
kt

D Death δk Mortality rate µk The number of people an average
IV Vaccinated ιc Basic infection coefficient individual in node k meets on a day
H Hospitalised Clinical in the absence of any restrictions
Q Quarantined ϕkt ψFTkt/(Skt + Jkt) κkt The fraction of people allowed out-
T Tested τkt ψTTkt/(Skt + Jkt) side within node k, at time t
Partially Observable ψF True positive rate of test
R Recovered ψT False positive rate of the test

νk Rate of vaccination at the kth node

Table 1: Definition of the compartments and the epidemiological and intervention parameters.
More details can be found in the Supplement (add link).

need for multiple rounds of lockdown to dampen the surges in infection. Moreover, even with

vaccination, natural “herd immunity” is not a practical policy option even from an economic

point-of-view if one carefully factors in the true economic costs. These conclusions are generally

consistent with the experience across the world. Therefore, it is expected that the proposed

framework can act as a useful workbench for health policy options at local or regional levels in

addressing the enormous challenges posed by the pandemic.

2 Mechanistic model for a viral epidemic

2.1 Compartments of the system

We propose a network-based multi-compartmental model to mimic the progression of a pandemic

in terms of various observable and partially or totally unobservable compartments. We consider a

network of N nodes, each representing a population center (e.g. town, district, state or country)

with different nodes possibly having different levels of vulnerability to the disease. The model

incorporates migration among the nodes.

We use t to denote time (in days), and k to denote nodes. Specifically, for node k, Dkt
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denotes the number of deaths up to time t. Notations for other compartments are similar.

The epidemic dynamics is assumed to be memoryless, meaning that the compartment transi-

tion rates are independent of the duration of stay in a particular compartment. Definitions

of the compartments and the epidemiological and intervention parameters are given in Table

1. More detailed definitions and underlying model assumptions are given in Section 1 of the

Supplementary material (add link). Note that, our model does not include a pre-symptomatic

compartment, which is neither observable nor identifiable from the available data for COVID-19.

Figure 1: Diagram showing the different stages of the propagation of the pandemic for the kth

node at time t.

5

http://blog.nus.edu.sg/sanjay


3 Description of the dynamics

The evolution of the pandemic is expressed mechanistically through equations (1)–(9). They

capture the mean daily change in the values of the compartments. A graphical representation

of the proposed disease propagation model is presented in Figure 1.

A key model assumption is that all infected individuals are initially asymptomatic, after

which they either start to show symptom, get tested and quarantined, or recover directly. The

disease spreads through the asymptomatic but infected individuals. We assume that uninfected

individuals, falsely caught in the quarantine net, join the susceptible population after tQ days

after isolating themselves. Both susceptible (S) and recovered (R) groups are vaccinated, with

the vaccination efficacy assumed to be 95% and 100% for these groups, respectively. Once vacci-

nated the individuals play no further role in the progression of the epidemic. Our model ignores

birth and deaths due to other causes (Ivorra et al., 2020). Migration (with time dependent rate)

is only allowed for the susceptible and asymptomatic populations of the nodes.

∆Skt =
∑
j:j ̸=k

ωjkSjt −
∑
j:j ̸=k

ωkjSkt − (ιkt + ϕkt + 0.95νk)Skt +Gk(t−tQ), (1)

∆Jkt =
∑
j:j ̸=k

ωjkJjt −
∑
j:j ̸=k

ωkjJkt − (τkt + γk + αk)Jkt + ιktSkt, (2)

∆Gkt = ϕktSkt −Gk(t−tQ), (3)

∆Ikt = γk(Jkt +Qkt)− (ζk + ξk)Ikt, (4)

∆Qkt = τktJkt − (γk + αk)Qkt, (5)

∆Hkt = ξkIkt − (ρk + δk)Hkt, (6)

∆Rkt = αk(Jkt +Qkt) + ζkIkt + ρkHkt − νkRkt, (7)

∆IVkt = 0.95νkSkt + νkRkt, (8)

∆Dkt = δkHkt. (9)
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4 Intervention through optimal lockdown

Other than vaccination, imposition of a lockdown with various severity has been useful in con-

trolling the spread of the pandemic. Lockdowns have evidently reduced the social interaction

and possibility of disease spread by asymptomatic individuals, resulting in lower deaths and

hospitalizations. However, economic costs of such lockdowns have also come under focus. Inad-

equate economic support during the lockdown can lead to serious socio-economic problems. The

mass migration of workers in India during the nationwide lockdown in 2020, and the staggering

number of deaths in the second wave in 2021, when lockdowns were localized and mostly de-

layed, have abundantly displayed the degree of humanitarian crises associated with unplanned

lockdowns. A cost-balanced strategy for imposing lockdowns should therefore be quite beneficial.

We device an optimal lockdown strategy by combining two considerations. A lockdown is

imposed whenever either the node-specific hospitalization rate exceeds a certain threshold ηkt,

or the number of symptomatic people exceed a certain fixed lower bound. The severity of the

lockdown is controlled by the social distancing parameter κkt (between 0 and 1, with 0 indicating

complete lockdown). The optimal choice of (ηkt, κkt) ensures that at all times and at all nodes,

the hospital capacity (assumed 0.5% of the nodal population) is never exceeded. This is achieved

by solving the constrained optimization problem:


(κ̂kt, η̂kt) = argmin

(κkt,ηkt)

Φ(κkt, ηkt) such that 0 ≤ κkt, ηkt ≤ 1, and

the proportion of hospitalised stays below 0.005, for all k and t.

(10)

The objective function Φ(κkt, ηkt) balances the economic cost of death with that of the cost

of lockdown. In particular we define:

Φ(κkt, ηkt) =
1

W
×

∑N
k=1DkT (κkt, ηkt)∑N

k=1 Sk1
+

∑N
k=1

∑T
t=1Ckt(κkt, ηkt)∑N
k=1 Sk1

. (11)
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The economic cost of the lockdown is represented by the term:

Ckt(κkt, ηkt) =


(1−κkt)(Skt+Jkt+Rkt+IVkt)

30×365 , whenever a lockdown is imposed,

0 otherwise.
(12)

This cost function comprises of the economic cost borne by those among susceptible, asymp-

tomatic, recovered and immunized people whose work opportunities are lost during lockdown

periods. On day t at node k, the fraction among these groups losing their job opportunities is

(1− κkt). The factor 365 in the denominator 30× 365 signifies the fact that the economic cost

is measured in terms of loss of per-capita annualized GDP, while the factor 30 is the (assumed)

expected number of additional years a person may live, if he/she does not succumb to the dis-

ease. This effectively means, in this cost calculation we equate each death to a loss of 30 years

of per-capita GDP. In practice, policymakers may give different relative importance to death

vis-a-vis the economic cost of lockdown. This is incorporated in (11) by the positive factor W .

A smaller value of W signifies a greater relative weight on the number of deaths.

5 Case studies

To explore the effects of testing and vaccination we perform a simulation study by generating

the compartmental trajectories from the proposed model. The analyses are carried out over a

time horizon of T = 400 days, using the epidemiological parameters given in Table 2. Population

sizes and initial values for the nodes are in Table 3. The number of daily tests Tkt is assumed

to grow daily by 3% until it reaches a maximum value.

Epidemic parameter ιc γ α ζ ξ ρ δ

Vulnerable node 0.1 0.03 0.005 0.05 0.2 0.07 0.03
Robust node 0.1 0.01 0.02 0.1 0.1 0.15 0.03

Table 2: The epidemic parameters for the nodes in the case studies.
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Node k 1 2 3 4 5 6 7 8 9 10
Type Vulnerable Robust
Sk1 450000 449900 450000 350000 350000 350000 350000 350000 250000 250000
Jk1 0 100 0 0 0 0 0 0 0 0

Tests, Tk1 1000 1000 1000 1000 1000 500 500 500 500 500
µk 3 3 3 3 3 5 5 5 5 5

Table 3: Initial value (on day t = 1) of the number of susceptible Sk1 and asymptomatic but
infected people Jk1 for each node k.

We consider six scenarios described in Table 4. Comparative summaries including the across-

node maximums of peak hospitalization, deaths and peak quarantined population are displayed

in Table 5. The optimal values of length, severity and threshold parameters for imposing a

lockdown, the resulting total economic cost, and total deaths, are displayed in Table 6.

Scenario 1 2 3 4 5 6

Type
Lockdown No No Yes Yes Yes Yes
Vaccination No Yes No Yes No Yes
Testing High High Low Low High High

Vaccination rate, νk
Vulnerable nodes 0 0.02 0 0.02 0 0.02
Robust nodes 0 0.01 0 0.01 0 0.01

Max testing capacity per day 20000 20000 5000 5000 20000 20000
Daily growth of testing=3%, ψT = 0.99, ψF = 0.02, ωjk ∈ (10−5, 10−4), W = 30

Table 4: Vaccination rates and daily testing capacities under different scenarios considered in
the six cases studies.

Max H Max D Max Q
Scenario Vulnerable Robust Vulnerable Robust Vulnerable Robust

1 55258(12.28%) 7041(2.01%) 90108(20.02%) 3684(1.05%) 56151(12.48%) 31029(8.87%)
2 27413(6.09%) 5327(1.52%) 49494(11.00%) 2843(0.81%) 28023(6.23%) 24703(7.06%)
3 604(0.13%) 1746(0.05%) 4210(0.94%) 2603(0.74%) 637(0.14%) 16624(4.75%)
4 1096(0.24%) 1749(0.05%) 2832(0.63%) 1836(0.52%) 893(0.02%) 13163(3.76%)
5 188(0.04%) 181(0.05%) 746(0.17%) 194(0.06%) 198(0.04%) 1463(0.42%)
6 421(0.09%) 733(0.21%) 1061(0.24%) 664(0.19%) 461(0.13%) 5739(1.64%)

Table 5: Maximum values of H, D and Q among vulnerable and robust nodes, respectively.
Percentages out of the population (for the node with the maximum value) are in parentheses.
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Optimal parameter Max Total Lockdown Duration (days) Economic cost of
Lockdown (% of GDP) Total DeathScenario (κv, κr) η Vulnerable Robust

1 (1,1) 1 0 0 0 429137 (11.92%)
2 (1,1) 1 0 0 0 242022 (6.72%)
3 (0.36, 0.36) 1× 10−4 387 368 57.32 30272 (0.84%)
4 (0.25, 0.29) 3.57× 10−4 143 192 28.44 20806 (0.58%)
5 (0.28, 7.76× 10−5) 5.58× 10−5 317 305 63.25 3951 (0.11%)
6 (0.18, 0.23) 1.69× 10−4 115 152 24.73 7281 (0.20%)

Table 6: Optimal parameters, maximums of total lockdown duration for the vulnerable and
robust are shown respectively. The economic cost of lockdown (as annualized % of GDP) and
total death of all nodes are also reported.

5.1 A shot at herd immunity

In the early days of the COVID-19 pandemic, a quick attainment of the herd immunity by not

imposing any restrictions was considered as a potential policy choice in many countries. This

choice was supposed to cause the least economic distress and would have made the population

immune (through recovery after infection) within the fastest time span. Even though a large

number of deaths and a possible collapse of the healthcare infrastructure were postulated, this

policy was initially adopted or considered in some countries, including Sweden and the UK.

From Figures 2 and 3, the devastating cost of such a policy is evident. Without a lockdown,

the number of susceptible falls exponentially fast, as essentially everyone in the populations is

exposed to the spread of the disease, and the pandemic runs its course within the first 100 days.

This however, comes at a terrible cost in terms death and hospitalization. Without vaccination,

even with high testing (Scenario 1), Tables 5, 6 and Figure 2 show that approximately 12% of the

population is likely to succumb to the disease. The death is particularly high in the vulnerable

population, where nearly 20% people are expected to die. At its peak almost 12% and 2% of

the population are expected to be hospitalised in the vulnerable and robust nodes, respectively.

By any standards, these numbers paint a catastrophic picture, and is well beyond the capacity

of any country’s healthcare system. The countries with large elderly and susceptible population

are expected to be more severely hit. Swedish policy of attaining a fast herd immunity has been

controversial. It has severely stretched medical facilities, and it is largely accepted that Sweden
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Figure 2: Scenario 1: Trajectories resulting from an attempt at achieving herd immunity with
high level of testing, but without lockdown or vaccination.

has fared worse compared to other Scandinavian countries which chose a more conservative

approach. In addition, delayed introduction of lockdown has resulted in severe shortage of

hospital beds in countries including the UK (in 2020) and India (in 2021).

Introduction of vaccination on the 10-th day after the onset (Scenario 2) does not improve

the results significantly. Even though the total number of deaths reduce to 6.7%, it is still

unacceptably high. In the vulnerable nodes around 11% of the population perishes. At the

epidemic’s peak, the hospitalization is about 6% in the vulnerable nodes and 1.5% in the robust

nodes, which far exceeds the assumed maximum hospital capacity of 0.5% of the population.

Even though no lockdown means no economic cost due to lost employment and business (see

Table 6)∗, the true cost of achieving a fast herd immunity is catastrophic. Assuming that each
∗For simplicity, we exclude medical costs and closure to business due to infections (Ghosh, (2021), this volume.)
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Figure 3: Scenario 2: Trajectories when no lockdown is allowed, but testing is high and vacci-
nation starts on the 10-th day into the pandemic.

person dying has 30 additional years to live, with 11.92% death the total cost to the economy

is 357.6% and 201.6% of the annual GDP in Scenarios 1 and 2, respectively. By comparing the

economic costs of policies with optimal lockdown in Table 6, it becomes evident that the policy

of achieving herd immunity fast without a lockdown is not even economically viable.

In both Scenarios 1 and 2, the robust nodes are also severely affected. Comparing with the

optimal values of (κv, κr) in other scenarios, it appears that a policy of isolating the vulnerable

population with a lockdown but leaving the robust population free of restrictions, does not seem

to be viable either. Indeed, from the scenarios discussed below, it seems the optimal lockdown

strategy is often harsher in the robust nodes than the vulnerable nodes.
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Figure 4: Scenario 3: Trajectories under a low testing regime and no vaccination.

5.2 Optimal lockdown in a low testing regime

Importance of mass testing and isolation of discovered cases through quarantines was empha-

sized by WHO and several medical organisations from the early days of the pandemic. However,

prevalence and effectiveness of testing in different countries have varied. Countries like Tai-

wan, South Korea, Germany, Iceland etc. could scale up testing to cover a huge part of their

population, while in many other countries, like the UK, India etc., much smaller portion of the

population could be tested.

In Scenarios 3 and 4, the daily testing was capped at 5000 per node. Without the availability

of vaccines, the proposed optimal strategy is to impose a long lockdown (387 days in vulnerable

and 368 days in the robust nodes). The pandemic does not end within 400 days. The susceptible

population decreases quite slowly in the vulnerable nodes. In the robust nodes, the susceptible
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Figure 5: Scenario 4: Trajectories when vaccines are rolled out in a low testing regime

population initially decreases fast, followed by a sharp increase in latter stages primarily due to

migration. The total mortality is low (0.84%), however the peak hospitalization in the robust

nodes reaches the maximum capacity of 0.5% (of the population). The peak quarantine rate is

also quite high at 4.75%.

With vaccination starting on the 100-th day, situation shows a marked improvement. Short

lockdown phases of 143 and 192 days, respectively, in the vulnerable and robust nodes, seem to

reduce the number of susceptible persons fast within 400 days. The lockdown needs to be more

severe than the settings with no vaccination (see Table 6). However, the economic cost due to

lockdown halves. The overall death percentage also reduces to 0.58%. Peak hospitalization in

the robust nodes still reaches the assumed capacity (0.5%), however.
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Figure 6: Scenario 5: Trajectories in a high testing paradigm, with no vaccination

5.3 Optimal lockdown in a high testing regime

We now consider the scenario where the maximum daily testing quickly increases daily by 3%

to 20000. With no vaccination, like in Scenarios 5, the pandemic does not end within 400 days.

But instead of a long, less severe lockdown, the optimal strategy involves repetitive lockdown

phases, shown in Figure 6. The total lockdown duration is shorter than in Scenario 3, especially

in the robust nodes. However, compared to Scenario 3, peak hospitalization rate and mortality

are markedly lower. Even though fewer days are spent under lockdown, their increased severity

(smaller values of (κv, κr)) results in a higher economic cost. Interestingly, the susceptible

populations in the robust nodes actually show a slow increase.

With vaccination starting on the 100-th day, the situation improves significantly. In Scenario

6, the optimal strategy involves a relatively modest initial lockdown period of 115 and 152 days
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Figure 7: Scenario 6: Trajectories under a combination of high daily testing and vaccination.

in the vulnerable and robust nodes, respectively. Once the vaccination starts, the susceptible

population decreases exponentially and the number of infected reduces to zero within an year.

Even though compared to Scenario 5, number of deaths, peak hospitalisations and peak quar-

antines are higher (see Table 5), the economic cost due to lockdown is much lower. In fact, it is

even lower than the economic cost for Scenario 4.

6 Discussion

Many aspects of the COVID-19 pandemic are still shrouded in mystery. Roll-out of several

vaccines have provided some hope of that the end of the pandemic may be near. This is especially

true in USA, where many restrictions like mask wearing, social distancing are being withdrawn.

Our case studies show that even though without mass vaccination the pandemic will not end,
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however, this is not enough in controlling the spread of the disease. Carefully designed lockdowns

are very effective in dampening the spread of infections and providing relief to the healthcare

system. Countries like Israel, UK, Chile and USA have been able to achieve a high vaccination

rate. However, given the uncertainty in the effectiveness of the vaccines in preventing infections

by mutant forms of the virus, the necessity of imposing periodic lockdown remains.

Our study clearly demonstrates the disastrous consequences of the strategy of attaining

“herd immunity”. In fact, except Sweden no country seems to have chosen that path. Positive

effects of a strict lockdown in controlling the pandemic in a relatively short time were observed

in countries like China, Australia, and New Zealand. Moreover, many countries like Spain, Iran,

Italy, Denmark, Germany, UK, India etc. have imposed multiple phases of lockdown. Most of

these lockdown measures have been imposed to address immediate healthcare crises without any

known discernible strategy regarding economic planning.

Our analyses show that a combination of “mundane” strategies like extensive diagnostic

testing, periodic lockdown and vaccination is the key to control and finally eradicate a desta-

bilizing pandemic like COVID-19. Furthermore, optimal strategies can be devised to minimize

the economic cost due to lockdown, limit the number of deaths, and relieve the stress on the

health infrastructure. By modifying migration policies, node compositions, and the relative im-

portance of deaths in the proposed cost function, the proposed model can be used to suit many

population structures and scenarios that may emerge in future. Finally, a policy which solely

relies on testing and vaccination, but no lockdown, is much more damaging in both health and

economic terms than a policy that optimally combines all the possible interventions.

Reproducibility

The R codes necessary for replicating our results are collated in the github page
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