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Abstract

In this article we propose a locally adaptive strategy for estimating a function
from its Exponential Radon Transform (ERT) data, without prior knowl-
edge of the smoothness of functions that are to be estimated. We build a
non-parametric kernel type estimator and show that for a class of functions
comprising a wide Sobolev regularity scale, our proposed strategy follows the
minimax optimal rate up to a log n factor. We also show that there does not
exist an optimal adaptive estimator on the Sobolev scale when the pointwise
risk is used and in fact the rate achieved by the proposed estimator is the
adaptive rate of convergence.
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1 Introduction

Single Photon Emission Computed Tomography (SPECT) imaging is a
valuable diagnostic tool that is frequently used to detect the presence of
tumors inside a patient’s body. The idea behind SPECT imaging can be
described very briefly in the following manner: A small amount of radioactive
tracer attached to some nutrient is injected in the patient’s body. After
a brief interlude (ranging from a few minutes to a few hours), a SPECT
scanner is used to measure the radioactive emissions from the body in a
range of directions by moving the scanner around the body. Along each
line, the data represents the intensity of emissions from a point along that
line. This data can be mathematically interpreted as an attenuated Radon
transform. From the attenuated Radon transform data, one then tries to
image the inside of the patient’s body to locate the presence of tumors. If
one makes the simplifying assumption that the attenuation is constant, then
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the attenuated Radon transform reduces to the case of what is known as the
exponential Radon transform. We point the interested reader to Kuchment
(2014) and Natterer and Wübbeling (2001) for a more detailed overview.

In the setting of the current article, our focus of investigation is the
estimation of a function from its stochastic (i.e. noisy) exponential Radon
transform (ERT) data. In fact, the ERT of a compactly supported function
f(x) in R

2 is given by:

Tμf(θ, s) =

∫

x·θ=s

eμx·θ
⊥
f(x)dx. (1.1)

Here s ∈ R, θ ∈ S1 where S1 is the unit circle in R
2, μ is a constant

and θ⊥ denotes a unit vector perpendicular to θ. Recall that lines in R
2

can be parameterized as L(θ, s) = {x : x · θ = s}. Thus, just as the classi-
cal Radon transform, ERT takes a function defined on a plane and maps it
to a function defined over the set of lines parameterized by (θ, s). Indeed,
the attenuated Radon transform (and thus, the ERT) is itself an example
of generalized Radon transforms that were studied in Quinto (1980, 1983).
Inversion methods for the exponential Radon transform (in a non-noisy set-
ting) are known from Natterer (1979) and Tretiak and Metz (1980), see also
Hazou and Solmon (1989) for filtered backprojection (FBP) type formulas.

Classical Radon transform has also been extensively studied in the stochas-
tic framework. The problem of positron emission tomography (PET) in
presence of noise was studied in Johnstone and Silverman (1990). In Ko-
rostelëv and Tsybakov (1991, 1992, 1993) the authors show that the kernel
type non-parametric estimators (which are closely linked to FBP inversion
methods) attain optimal minimax convergence rate. In Abhishek (2022),
the author extended the results that were known for Radon transform from
Korostelëv and Tsybakov (1991, 1992) to the setting of stochastic ERT. In
Cavalier (1998) Cavalier obtained results on efficient estimation of density in
the non-parametric setting for stochastic PET problem. In addition to the
non-parametric kernel type estimators, Bayesian estimators for the stochas-
tic problem of X-ray tomography have been studied by several authors, see
e.g. Siltanen et al. (2003) and Vänskä et al. (2009) and references therein.
More recently, authors in Monard et al. (2019) have obtained results on effi-
cient Bayesian inference for the attenuated X-ray transform on a Riemannian
manifold.

In the tomography results described so far, in the stochastic framework
one usually assumes that the the smoothness (e.g. Sobolev regularity) of
the function to be estimated is known. An interesting problem is to devise
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adaptive estimation procedures that can be applied for the estimation of a
function without a priori knowledge of its smoothness. In Cavalier (2001),
the problem of estimation of bounded functions from its noisy Radon trans-
form data was solved. The (locally adaptive) estimation procedure described
in Cavalier (2001) was based on the method proposed in Lepski et al. (1997).
Adaptive estimation of functions, especially in the direct regression setting,
has a rich and varied history and was given a major impetus by publication of
a series of articles Lepskĭı (1990, 1991, 1992). Spatially adaptive estimation
procedures were considered in Donoho and Johnstone (1994) and Lepskĭı
and Spokoiny (1995). The problem of optimal pointwise adaptation was
considered in Lepski and Spokoiny (1997) and Tsybakov (1998) for Hölder
and Sobolev classes respectively. In fact, an ubiquitous feature of pointwise
adaptive estimation over Sobolev classes seems to be a certain logarithmic
loss of efficiency when compared to the optimal minimax rate of convergence
if one assumes knowledge about the Sobolev regularity of the function, see
also Butucea (2000, 2001) for related results. Such a loss of efficiency for the
estimation of a function from its Radon transform data was also conjectured
(on the Sobolev scale) by the author in Cavalier (2001). However, in our
knowledge, such a conjecture was not proved for any problem in an inverse
problem setting (Radon transform or otherwise). Our results in the current
article establish that such a loss of efficiency in the estimation of a function
is indeed true in the even more general set-up of estimation of function from
its exponential Radon transform, thereby answering the conjecture proposed
in Cavalier (2001). We remark here that the adaptive estimation of function
from its ERT data falls in the category of statistical inverse problems which
are different in flavor from the problems in adaptive estimation in the non-
parametric regression setting or probability density estimation from direct
observations. Finally, we mention below a partial list of several important
results in the theory of adaptive estimation for inverse problems such as de-
convolution and change point estimation which have pushed the boundaries
of this area of research far and wide, see e.g. Butucea and Tsybakov (2007a,
b), Cavalier et al. (2003), Cavalier and Tsybakov (2002), Goldenshluger
(1999, 2008a, b) and Lepski and Willer (2017, 2019).

The organization of this article is as follows: in Section 2, we describe the
mathematical set-up of the problem and recall some relevant definitions. In
Section 3, we apply the adaptive strategy of Cavalier (2001) to the problem
of stochastic ERT and at first recover similar results for the ERT case as
was proved in the Radon transform setting by the author in Cavalier (2001).
The proofs for the first three theorems follow from similar techniques as in
Cavalier (2001) except for the modifications needed to adapt the proofs to
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the ERT problem. We present these proofs for the sake of completeness.
Theorem 4 in the article establishes a ‘no-optimality’ result for the adaptive
estimation of a function from its ERT data and shows that among all the
adaptive strategies, the strategy as used in the current article is the ‘best’
(see Definition 6). For the proof of this theorem, we have adapted the method
used in Butucea (2000, 2001) in the direct problem of density estimation over
Sobolev classes in the setting of our particular inverse problem. Finally, the
appendix has a proof of an auxiliary lemma.

2 Problem Set-Up and Definitions

In this section we will describe the mathematical framework for the prob-
lem and recall some standard definitions from the literature.

Let B1 = {x : ||x|| ≤ 1} be the unit ball in R
2 where ||·|| denotes the

usual Euclidean norm. Let f(x) : R2 → R be a function such that it is
supported in B1, is continuous (a.e.) and |f(x)| ≤ L for some L > 0. We
will denote the class of such functions by B(L).

Definition 1. Let S1 denote the unit circle in R
2 and Z = S1 × [−1, 1]

be the cylinder whose points are given by (θ, s) where s ∈ [−1, 1] and θ ∈ S1.
By θ⊥, we will denote a unit vector perpendicular to θ. The exponential
Radon transform of f ∈ B(L) is defined as the following function on Z:

Tμf(θ, s) =

∫
x·θ=s

eμx·θ
⊥
f(x)dx,

where μ is a fixed constant. It is clear that if μ = 0, then the exponential
Radon transform reduces to the case of the classical Radon transform.

Definition 2. Let g(θ, s) be a compactly supported function on Z. The
associated dual transform is then defined as:

T �
μg(x) =

∫
S1
eμx·θ

⊥
g(θ, x · θ)dθ.

For μ = 0, this reduces to the backprojection operator for the classical Radon
transform.

Let {(θi, si)}i=n
i=1 be n random points on the observation space Z and let

the observations be of the form:

Yi = Tμf(θi, si) + εi. (2.1)

We assume that the points (θi, si) are independent and identically distributed
(i.i.d.) on Z and are distributed uniformly. The noise, εi, are i.i.d. Gaus-
sian random variables with zero mean and some finite positive variance σ2.
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Then the stochastic inverse problem for exponential Radon transform is to
estimate the function f(x) based on noisy observations Yi of the function
Tμf(θ, s) observed at n randomly sampled points {(θi, si)}ni=1 of the obser-

vation space Z. Let us denote by f̂n(x) any estimator of f(x) based on the
observed data.

Now we recall some definitions that will be frequently used in this article.
In this article, the semi-norm d (e.g. in Definition 3) will be given by:
d(f, g) = |f(x0)−g(x0)| where x0 is an arbitrary fixed point in B1. From here
on, Ef (·) and V arf (·) will be used to denote the expectation and variance
with respect to the joint distribution of random variables (si, θi, Yi), i =
{1, . . . , n} satisfying the model given by Eq. 2.1.

Definition 3. (Johnstone and Silverman, 1990; Tsybakov, 2009) The
risk function of an estimator f̂n(x) is defined as:

R(f̂n, f) = Ef (d
2(f̂n, f)).

When the d is as above, the risk is also referred to as the Mean Squared
Error (MSE).

The overall measure of risk associated to any estimation procedure is
given by the minimax risk.

Definition 4. (Tsybakov, 2009, Page 78) Let f(x) belong to some non-
parametric class of functions F . The maximum risk of an estimator f̂n is
defined as:

r(f̂n) = sup
f∈F

R(f̂n, f).

Finally, the minimax risk on F is defined as:

rn(F) = inf
f̂n

sup
f∈F

R(f̂n, f),

where the infimum is taken over the set of all possible estimators f̂n of f .
Clearly,

rn(F) ≤ r(f̂n).

In the next definition, we recall the concept of minimax optimality.

Definition 5. (Tsybakov, 2009, Page 78) Let {Ψ2
n}∞n=1 be a positive

sequence converging to zero. An estimator f̂∗
n is said to be minimax optimal

if there exist finite positive constants C1 and C2 such that,

C1Ψ
2
n ≤ rn(F) ≤ r(f̂∗

n) ≤ C2Ψ
2
n.

Furthermore, Ψ2
n is said to be the optimal rate of convergence.
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A function f belongs to the Sobolev ball H(β,C), if∫
R2

(1 + ||ξ||2)β |f̃(ξ)|2dξ ≤ C,

where f̃(ξ) denotes the Fourier transform of f . We will assume β > 1 and
wherever understood, we will write H(β) for H(β,C). In Abhishek (2022),
we showed that the minimax optimal rate of convergence under the MSE
risk in the estimation of a function on R

2 from its stochastic ERT is given
by, φn,β = O(n−(β−1)/(2β+1)). This follows as a consequence of Theorems 3
and 5 in Abhishek (2022). Note that such an optimal minimax rate can be
achieved by an estimator if one knows the smoothness of the function that
is to be estimated (in particular that it belongs to H(β,C)), however in
practice the smoothness is unknown.

In this article, our goal is to build locally adaptive data driven estimators
that do not assume prior knowledge about the smoothness of the functions
that are to be estimated. We will test the accuracy of such estimators by
looking at their performance over a class of functions encompassing a wide
scale of Sobolev regularity. Let us make these ideas precise: assume now that
we only know that the function to be estimated belongs to H(β) ∩ B (L)
where β lies in a discrete set Bn given by Bn = {β1 < · · · < βNn} such that
β1 > 1 is fixed and limn→∞BNn → ∞. The adaptive rate of convergence
(ARC) on a scale of classes H(β) ∩B(L), β ∈ Bn is defined as:

Definition 6. (Tsybakov, 1998, Definition 3) A sequence ψn,β is said to
be an ARC if:

(a) There exists a rate adaptive estimator f∗(x) independent of the
smoothness scale β such that

lim sup
n→∞

sup
β∈Bn

sup
f∈H(β)∩B(L)

(ψn,β)
−2Ef (f

∗(x)− f(x))2 < ∞. (2.2)

(b) If there exists another sequence γn,β and another adaptive estimator
f∗∗(x) satisfying:

lim sup
n→∞

sup
β∈Bn

sup
f∈H(β)∩B(L)

(γn,β)
−2Ef (f

∗∗(x)− f(x))2 < ∞.

and a β′ such that
γn,β′

ψn,β′
→

n→∞
0,

then there exists a β′′ such that

γn,β′

ψn,β′

γn,β′′

ψn,β′′
→

n→∞
∞.
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In other words, if some rate other than ψn,β satisfies a condition similar
to Eq. 2.2 and if this rate is faster for some smoothness parameter β′, then
there has to be some other smoothness parameter, β′′; where the loss is
infinitely greater for large sample sizes n.

Remark 1. The results are obtained for functions on R
2 and can be

easily extended to R
d for arbitrary d ≥ 2. However, we deal here with

the case d = 2 because it is an important one from an application point
of view. Additionally, the ‘curse of dimensionality’ is pertinent to a lot of
non-parametric estimation methodology, such as the one used here.

Remark 2. An adaptive estimator is said to be optimally rate adaptive
if it achieves minimax optimality for every β ∈ Bn, see Tsybakov (1998,
equation 2.6). If there exists an estimator that is optimally rate adaptive
then it also achieves the adaptive rate of convergence.

Next, we discuss the procedure for building an adaptive strategy and
present results that establish the adaptive rate of convergence of the pro-
posed strategy.

3 Adaptive Strategy

We begin by recalling some results from Abhishek (2022). Let δ > 0, s ∈
R. Then we define:

Kδ(s) =
1

π

∫ √
(1/δ2)+μ2

|μ|
r cos(sr)dr.

Such functions are called filter functions and have been used in backprojec-
tion type reconstruction formulas for Radon transforms, see e.g. Korostelëv
and Tsybakov (1993, Page 237) and Natterer (2001, Page 109). Here the
quantity δ is referred to as the bandwidth of the filter. We will denote the
convolution in the second variable, of two functions f and g defined on the
cylinder Z̃ = S1×R by �, i.e. f �g(θ, s) =

∫
R
f(θ, s−t)g(θ, t)dt. We consider

the estimator:

f̄δn(x) =
1

n

n∑
i=1

e−μx·θ⊥i Kδn(〈x · θi〉 − si)Yi, (3.1)

where Yi is the observed data as in Eq. 2.1. For this estimator we evalu-
ated the bias B(f̄δn) ≤ c̃δβ−1

n where c̃ is a constant as well as its variance
V arf (f̄δn) ≤ c∗(nδn)−3 = v2(δn) in Abhishek (2022). By balancing the bias
and the variance terms it was shown that if δn = c0 · [n−1/(2β+1)] where c0 is
a constant, then the estimator is minimax optimal. Notice that the choice of
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such an optimal bandwidth depends upon the smoothness β of the function
to be estimated. We will now describe an adaptive bandwidth selection pro-
cedure that can be used when the smoothness of function to be estimated is
not known. This bandwidth selection procedure was proposed by Cavalier
(2001) in the context of adaptive estimation of a function from its stochastic
Radon transform data and is based on the method described in the article
by Lepski et al. (1997).

We assume that the locally adaptive bandwidths δ̄(x) are chosen from a
geometrical grid Δn given by:

Δn = {δ ∈ [δ−n , 1] : δ = a−j , j = 0, 1, 2, . . . }, (3.2)

where a ≥ 2 and a logn
n ≤ 1, δ−n = logn

n . Let fδ(x) = Ef [f̄δ(x)]. Further-
more, similar to the proof of Abhishek (2022, Lemma 1) and Cavalier (2001,
equation 12), it can be shown that for some constant c∗∗,

Varf (f̄δ(x)− f̄η(x)) ≤
c∗∗

n

∫
(Kδ(u)−Kη(u))

2du := v2(δ, η). (3.3)

Remark 3. The constant c∗∗ can be evaluated precisely following ar-
gument similar to that of Abhisheck (2022, Lemma 1) and is equal to

c∗∗ = σ2+4e4|μ|
4π . However, we do not need its precise value for the proofs

that follow.

For δ > η, we define,

ψ(δ, η) = v(δ)λ(δ) + v(δ, η)λ(η), (3.4)

where λ(δ) = max
(
1,
√
D2 log

1
δ

)
and v2(δ) = c∗(nδ)−3 ≥ V arf (f̄δ). Here,

D2 is a real number which can be chosen as desired (we will make the choice
more precise later). The data driven ‘adaptive bandwidth’ δ̄(x) will be given
by the following relation:

δ̄(x) = max{δ ∈ Δn : |f̄δ(x)− f̄η(x)| ≤ ψ(δ, η) ∀η ≤ δ, η ∈ Δn}. (3.5)

Correspondingly, the adaptive estimator is given by:

f∗(x) = f̄δ̄(x) =
1

n

n∑
i=1

e−μx·θ⊥i Kδ̄(x)(〈θi, x〉 − si)Yi. (3.6)

We remark here that the definition for δ̄(x) is defined locally at every
point x and it does not assume the a priori knowledge about the function
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f(x), in particular its smoothness. Next, we define a ‘locally deterministic
bandwidth’ whose definition involves the unknown function f(x) itself:

δn=δn(x, f)=max{δ∈Δn : |fη(x)−f(x)|≤ v(δ)λ(δ)

2
∀η∈Δn, η≤δ}. (3.7)

Recall, fη(x) = Ef [f̄η(x)], where f̄η is defined as in Eq. 3.1.
Finally, following Cavalier (2001) & Lepski et al. (1997) we define the

adaptive convergence rate rn(x, f):

rn(x, f) = inf
δ∈[δ−n ,1]

{
sup

0≤η≤δ
(fη(x)− f(x))2 + c∗δ−3 logn/n

}
. (3.8)

Note that, δ could be any value in [(log n)/n, 1]. In fact, rn(x, f) is a
modification of the mean-squared risk in Definition 3, where we have mod-
ified it by adding a log factor in the second term, as is known from Lepskĭı
(1990) and also used by Cavalier (2001).

Now we are ready to state our first theorem which essentially says that
the ‘estimator’ formed with ‘locally deterministic bandwidth’ δn has its risk
bounded by rn(x, f) up to a constant factor. However, we also note that
the δn can be found only if one knows the function f(x) in the first place.
In this sense, δn can be thought of as an ideal bandwidth for the adaptive
estimation procedure and f̄δn(x) as an oracle.

Theorem 1. For any f ∈ B(L) we have as n → ∞:

Ef [(f̄δn(x)− f(x))2] ≤ 5

4
v2(δn)λ

2(δn) ≤ C(a)rn(x, f), (3.9)

where C(a) is a constant depending on a, where a is the same as in Eq. 3.2.

Proof. First of all, we address an auxiliary point. In order for the
definition of δn to make sense, we will first need to show that the set over
which the maximum is taken in this definition is non-empty. Recall that,

fδ−n (x) = δ
1

δ−n � f (see eg. Abhishek 2022) where δ
1

δ−n is an approximate

convolutional identity defined in R
2,

δ
1

δ−n (x) =

∫
|ξ|≤ 1

δ−n

e−iξ·xdξ =

∫
I 1

δ−n
(ξ)e−iξ·xdξ.
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Thus,

|(fδ−n − f)(x)|2 ≤ 2|fδ−n (x)|
2 + 2|f(x)|2 = 2|δ

1

δ−n � f(x)|2 + 2|f(x)|2

≤ 2

(
1

4π2

)(∫
R2

|f̂(ξ)I 1

δ−n
(ξ)|dξ

)2

+ 2|f(x)|2

≤ 2

(
1

4π2

)(∫
R2

|f̂(ξ)|2dξ
∫
R2

|I 1

δ−n
(ξ)|dξ

)

+2|f(x)|2 (Hölder’s inequality)

≤ 2

(
1

4π2

)
L2π · π

(
1

δ−n

)2

+ 2L2 ≤ 5L2

2δ−n
2 . (3.10)

On the other hand, 1
4v

2(δ−n )λ
2(δ−n ) ≥ 1

4c
∗ (δ−n )−3

n D2 log
(

1
δ−n

)
. We also

have, log( 1
δ−n

) = log( n
logn) ≥

logn
2 = nδ−n /2. Thus,

1

4
v2(δ−n )λ

2(δ−n ) ≥
c∗D2

8(δ−n )2
. (3.11)

Note that if D2 ≥ 20L2/c∗, then c∗D2

8(δ−n )2
≥ (5L2)/(2(δ−n )

2). This along

with Eq. 3.10 gives,

|fδ−n (x)− f(x)|2 ≤ 1

4
v2(δ−n )λ

2(δ−n ),

which in turn shows that the set over which the maximum is taken in Eq. 3.7
is non-empty. Now coming back to the proof of the theorem,

Ef (f̄δn(x)− f(x))2 = (fδn(x)− f(x))2 + varf f̄δn(x)

≤ 1

4
v2(δn)λ

2(δn) + v2(δn)

≤ 5

4
v2(δn)λ

2(δn) (using λ2(δn) ≥ 1).

Let the infimum in the above definition of rn(x, f) be obtained for δ = δ0.
We now have two cases:

Case 1: If δ0 < aδn,

rn(x, f) ≥ c∗δ−3
0

log n

n
≥ c∗a3δ−3

n

log n

n
.

From the definitions of v2(δn) and λ2(δn), we know that,

5

4
v2(δn)λ

2(δn) = max

{
5

4

c∗δ−3
n

n
,
5

4

c∗δ−3
n D2

n
log(1/δn)

}
.
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Since δ−n ≤ δn, then for n ≥ 3 we have the following sequence of inequal-
ities:

log(1/δn) ≤ log(1/δ−n ) = log(n/ log n) ≤ logn.

Thus if we choose C1 = C1(a,D2) > max{ 5
4a3

, 5D2
4a3

}, we have:

Ef [(f̄δn(x)− f(x))2] ≤ 5

4
v2(δn)λ

2(δn) ≤ C1rn(x, f),

for n large enough.

Case 2: If δ0 ≥ aδn, then from the definition of δn (see Eq. 3.7),

sup
0≤η≤δ0

(fη(x)− f(x))2 ≥ sup
0≤η≤aδn

(fη(x)− f(x))2 ≥ v2(aδn)λ
2(aδn)

4
.

So for some C2 = C2(a) large enough, we have:

Ef [(f̄δn(x)− f(x))2] ≤ 5

4
v2(δn)λ

2(δn) ≤ C2rn(x, f).

The next theorem states that the adaptive estimator as proposed in
Eq. 3.6 mimics the performance of the ideal estimator formed with the locally
deterministic bandwidth δn.

Theorem 2. For any f ∈ B(L) with L > 0 and any point x ∈ R
2, we

have for n → ∞:

Ef [(f
∗(x)− f(x))2] ≤ c(a)v2(δn)λ

2(δn) ≤ c′(a)rn(x, f),

where c(a) and c′(a) are constants depending on a.

Proof. We decompose the risk in to two parts and consider each part
one by one:

Ef [(f
∗(x)− f(x))2] = Ef [(f

∗(x)− f(x))2]I(δ̄ ≥ δn)

+Ef [(f
∗(x)− f(x))2]I(δ̄ < δn).

Remark 4. Here, I(δ̄ ≥ δn) represents the indicator function of the
set {x ∈ R

2 : δ̄(x) ≥ δn} where δ̄(x) and δn are as defined in Eqs. 3.5
and 3.7 respectively. Similarly, I(δ̄ < δn) is the indicator function of the set
{x ∈ R

2 : δ̄(x) < δn}. Furthermore, by an abuse of notation, we denote the
set {x ∈ R

2 : δ̄(x) ≥ δn} as simply {δ̄ ≥ δn}. The notation {δ̄ < δn} is to be
understood similarly as the set {x ∈ R

2 : δ̄(x) < δn}. This notation has been
used in Case 1 and Case 2 below. More generally, we will use the following
convention. Let S be any statement. We denote the set {x ∈ R

2 : S} := {S}
to mean the points x ∈ R

2 where the statement S is true.
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Case 1: {δ̄ ≥ δn}. Note that for any δ′ ≥ δ we have v(δ) ≥ v(δ′) and
λ(δ) ≥ λ(δ′). Thus it is easy to see that ψ(δ′, δ) ≤ v(δ)λ(δ) + v(δ, δ′)λ(δ).
Using the fact that

∫
(Kδ(s) −Kδ′(s))

2ds ≤ 2
∫
K2

δ (s)ds + 2
∫
K2

δ′(s)ds, we
get that v2(δ, δ′) ≤ 2[v2(δ) + v2(δ′)] ≤ 4v2(δ). Thus, v(δ, δ′) ≤ 2v(δ) which
in turn implies, ψ(δ, δ′) ≤ 3v(δ)λ(δ).

Now we have a series of inequalities,

|f∗(x)− f̄δn(x)|I(δ̄ ≥ δn) ≤ ψ(δ̄, δn) ≤ max(ψ(δ′, δn) : δ
′ ∈ Δn, δ

′ ≥ δn)

≤ 3v(δn)λ(δn).

Thus,

Ef [(f
∗(x)− f(x))2]I(δ̄ ≥ δn)

= Ef [(f
∗(x)− f̄δn(x) + f̄δn(x)− fδn(x)

+fδn(x)− f(x))2]I(δ̄ ≥ δn)

≤ 3[Ef [(f
∗(x)− f̄δn(x))

2]I(δ̄ ≥ δn) + Ef [(f̄δn(x)

−fδn(x))
2] + (fδn(x)− f(x))2]

≤ 3[9v2(δn)λ
2(δn) + v2(δn) +

1

4
v2(δn)λ

2(δn)]

= c1v
2(δn)λ

2(δn), (3.12)

where c1 is a constant and where we have used the fact that λ2(δn) ≥ 1.

Case 2: {δ̄ < δn}. Consider the set Bn(x, δ, η) = {x ∈ R
2 : |f̄δ(x)− f̄η(x)| >

ψ(δ, η)} where η ∈ Δn, δ ∈ Δn and δ > η. Following Remark 4, we will use
the following notation Bn(x, δ, η) := {|f̄δ(x) − f̄η(x)| > ψ(δ, η)}. Consider
the event {δ̄ = δ/a} for any δ ∈ Δn. Since a > 1, this implies δ > δ̄.
Let Δn(δ) := {η ∈ Δn, η < δ}. Thus from the definition of δ̄ we get,
{δ̄ = δ/a}⊂ ∪η∈Δn(δ)Bn(x, δ, η). From this it follows,

{δ̄ < δn} ⊂
⋃

{δ̄ = δ/a : δ ∈ Δn(aδn)} ⊂
⋃

δ∈Δn(aδn)

⋃
η∈Δn(δ)

Bn(x, δ, η).

Thus we have the following series of inequalities,

Ef [(f
∗(x)− f(x))2I(δ̄ < δn)]

≤
∑

δ∈Δn(aδn)

Ef [(f̄a−1δ(x)− f(x))2I(δ̄ = a−1δ)]

≤
∑

δ∈Δn(aδn)

∑
η∈Δn(δ)

Ef [(f̄a−1δ(x)− f(x))2I(Bn(x, δ, η))].
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Since δ/a < δn, |fa−1δ(x) − f(x)| ≤ v(δn)λ(δn)/2 ≤ v(δ)λ(δ)/2. We
remark here that the fact that both δ and δn are in the geometric grid Δn

along with the fact that δ < aδn gives us that δ ≤ δn. This explains the
rightmost inequality in the above expression.

Furthermore, from the definition of δn, for any η < δ ≤ δn we get,

|fη(x)− f(x)| ≤ v(δn)λ(δn)

2
≤ v(δ)λ(δ)

2
.

Note that,

|f̄δ(x)− f̄η(x)| = |f̄δ(x)−f̄η(x)−(fδ(x)−fη(x))+fδ(x)−f(x) + f(x)− fη(x)|
≤ |f̄δ(x)−f̄η(x)−(fδ(x)−fη(x))|+|fδ(x)−f(x)|+|f(x)− fη(x)|

≤ | 1
n

n∑
i=1

ζi|+ v(δ)λ(δ),

where ζi = e−μx·θ⊥i (Kδ(〈x · θi〉 − si)−Kη(〈x · θi〉 − si))Yi− (fδ(x)− fη(x)).
Thus it follows from the definition of Bn(x, δ, η) and ψ(δ, η) that

Bn(x, δ, η) ⊂
{
x ∈ R

2 :

∣∣∣∣∣
1

n

n∑
i=1

ζi

∣∣∣∣∣ > v(δ, η)λ(η)

}
.

Therefore,

Ef [(f
∗(x)− f(x))2I(δ̄ < δn)]

≤
∑

δ∈Δn(aδn)

∑

η∈Δn(δ)

Ef

[
(f̄a−1δ(x)−f(x))2I

({∣∣∣∣∣
1

n

n∑

i=1

ζi

∣∣∣∣∣>v(δ, η)λ(η)

})]

≤
∑

δ∈Δn(aδn)

∑

η∈Δn(δ)

(
Ef [(f̄a−1δ(x)− f(x))]4

) 1
2

(
Pf

(∣∣∣∣∣
1

n

n∑

i=1

ζi

∣∣∣∣∣>v(δ, η)λ(η)

)) 1
2

,

where the last inequality follows on an application of the Cauchy-Schwarz
inequality. Also note that

Pf

(∣∣∣∣∣
1

n

n∑
i=1

ζi

∣∣∣∣∣ > v(δ, η)λ(η)

)
≤ Pf

(
1

n

n∑
i=1

ζi > v(δ, η)λ(η)

)

+Pf

(
− 1

n

n∑
i=1

ζi > v(δ, η)λ(η)

)
. (3.13)
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Let us estimate the first term on the RHS of the previous inequality
(3.13). For this, note that we have by Markov’s inequality:

Pf

(
1

n

n∑
i=1

ζi > v(δ, η)λ(η)

)
≤ Ef

(
exp (

z

n

n∑
i=1

ζi)

)
exp (−zv(δ, η)λ(η)).

For the i.i.d variables ζi as defined above it is easy to see that

Ef

(
1

n

n∑
i=1

ζi

)
= 0 and V arf (ζi) ≤ v2(δ, η).

Furthermore, by using the fact that ζi are i.i.d, we can write

Ef

[
exp

(
z

n

n∑
i=1

ζi

)]
=

(
Ef

[
exp

( z
n
ζ1

)])n
. (3.14)

We will denote by Kη
δ := e−μx·θ⊥ [Kδ(〈x ·θ〉−s)−Kη(〈x ·θ〉−s)]. In view

of Eq. 3.14, let us at first evaluate the following conditional expectation:

Ef [exp
( z
n
ζ1

)
|(θ, s)]

= Ef

[
exp

( z
n

(
Kδ

η(Tμf + ε1)− (fδ(x)− fη(x))
))∣∣(θ, s)]

= exp
( z
n

(
Kδ

η(Tμf(θ, s))− (fδ(x)− fη(x))
))

Ef

[
exp

( z
n
Kη

δ ε1

)∣∣(θ, s)]

= exp

(
z

n

(
Kη

δ Tμf(θ, s)−(fδ(x)−fη(x))+
z2σ2

2n2
(Kη

δ )
2

))
(ε1 is Gaussian)

= exp

(
z

n
(Kη

δ Tμf(θ, s)− (fδ(x)− fη(x)) +
z2σ2

2n2
((Kη

δ )
2 − E(θ,s)(K

η
δ )

2)

+
z2σ2

2n2
E(θ,s)(K

η
δ )

2

)

= exp (U1 + U2) exp

(
z2σ2

2n2
E(θ,s)(K

η
δ )

2

)
,

where U1=
z
n(K

η
δ Tμf(θ, s)−(fδ(x)−fη(x)) and U2=

z2σ2

2n2 ((K
η
δ )

2−E(θ,s)(K
η
δ )

2).
Observe here that E(θ,s)(U1) = 0 = E(θ,s)(U2). Also one can easily verify
that V ar(θ,s)U1 = V ar(θ,s)(

z
nζ1) ≤ (z2/n)v2(δ, η). For the calculations below

we would also need an estimate on V ar(θ,s)(U2). Note that V ar(θ,s)(U2) =
z4σ4

4n4 V ar(θ,s)(K
η
δ )

2 = z4σ4

4n4 [E(θ,s)(K
η
δ )

4 − (E(θ,s)(K
η
δ )

2)2]. As η < δ and both
belong to the geometric grid Δn, Eθ,s(K

η
δ )

2 �= 0. Thus,

E(θ,s)(K
η
δ )

4

(E(θ,s)(K
η
δ )

2)2
=

E(θ,s)(K
η
δ )

4

E(θ,s)(K
η
δ )

4 − V ar(θ,s)(K
η
δ )

2
=

1

1−
(
V ar(θ,s)(K

η
δ )

2

E(θ,s)(K
η
δ )

4

) .
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Moreover from the fact that Eθ,s(K
η
δ )

2 �= 0 it follows that,

V ar(θ,s)(K
η
δ )

2 < E(θ,s)(K
η
δ )

4.

Thus we get,
E(θ,s)(K

η
δ )

4

(E(θ,s)(K
η
δ )

2)2
= C̃(η, δ) > 1 where C̃(η, δ) is some constant

depending upon η and δ. Recall from Eq. 3.3, that v2(δ, η) = c∗∗
n

∫
R
(Kδ(u)−

Kη(u))
2du. Thus,

E(θ,s)(K
η
δ )

2 =
1

4π

∫
θ∈S1

∫
|s|≤1

(Kη
δ )

2dsdθ

≤ 1

4π

∫
θ∈S1

e−2μx·θ
∫
R

(Kδ(u)−Kη(u))
2dudθ

≤ e2|μ|n

c∗∗
v2(δ, η) = C∗nv2(δ, η). (3.15)

This in turn gives us,

V ar(θ,s)(U2) ≤ z4σ4

4n4
(C̃(η, δ)− 1)(E(θ,s)(K

η
δ )

2)2

≤ z4σ4

4n2
(C̃(η, δ)− 1)(C∗)2v4(δ, η).

Taking z = δλ(η)/v(δ, η) and (C̃(η, δ)− 1)(C∗)2 = C(η, δ) , we get,

V ar(θ,s)U2 ≤ δ4λ4(η)C(η, δ)σ4/4n2.

Finally as U1 and U2 are bounded (and thus sub-Gaussian), we get:

[
Ef

(
exp

( z
n
ζ1

))]n

≤ exp (δ2λ2(η)) exp

(
δ2λ2(η)σ2C∗

2

)
exp

(
δ4σ4λ4(η)C(δ, η)

4n

)
.

With n → ∞, we get,

[
Ef

(
exp

( z
n
ζ1

))]n
≤ exp

(
δ2λ2(η)

(
1 +

(
C∗σ2

2

)))
. (3.16)
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Using Eq. 3.16,

Pf

(
1

n

n∑
i=1

ζi > v(δ, η)λ(η)

)

≤ exp

(
λ2(η)

(
δ2

(
1 +

(
C∗σ2

2

))
− δ

))

≤ exp (λ2(η)(c1δ
2 − δ))(

where c1 = 1 +
C∗σ2

2
> 1 is a constant

)
.

(3.17)

Since Eq. 3.17 is true for all δ, in particular it is true for δ = 1/2c1 and
we get,

Pf

(
1

n

n∑
i=1

ζi > v(δ, η)λ(η)

)
≤ exp

(
−λ2(η)

4c1

)
.

Finally, we get,

Pf

(
1

n

n∑
i=1

ζi > v(δ, η)λ(η)

)
≤ 2 exp

(
−λ2(η)

4c1

)
≤ 2 exp

(
−D2 log(1/η)

4c1

)
.

Now consider,

Ef (f̄a−1δ(x)− f(x))4 = Ef (f̄a−1δ(x)− fa−1δ(x) + fa−1δ(x)− f(x))4

≤ 8Ef [(f̄a−1δ(x)− fa−1δ(x))
4]+ 8(fa−1δ(x)−f(x))4

≤ 8Ef

⎡
⎣
(
1

n

n∑
i=1

zi

)4
⎤
⎦+ 2v4(δn)λ

4(δn),

where zi = e−μx·θ⊥i Ka−1δ(〈θi, x〉−si)Yi−fa−1δ(x) are i.i.d. random variables.
It is easy to see that Ef (zi) = 0 and V arf (zi) ≤ nv2(a−1δ). Thus on

expanding
(
1
n

∑n
i=1zi

)4
, one can show that,

8Ef

⎡
⎣
(
1

n

n∑
i=1

zi

)4
⎤
⎦ ≤ 8

[
Ef (z1)

4

n3
+

3
(
n
2

)
n2v4(a−1δ)

n4

]
.

As n → ∞, we get,

8Ef

⎡
⎣
(
1

n

n∑
i=1

zi

)4
⎤
⎦ ≤ c3v

4(a−1δ),
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where c3 is a positive constant. Recalling that η, δ≤δn, v
2(δ/a)=c∗(δ/a)−3/n

and v(δn) ≤ v(a−1δ) we have,

Ef [(f
∗(x)− f(x))2I(δ̄ < δn)]

≤ c4
∑

δ∈Δn(aδn)

∑
η∈Δn(δ)

(
v4(a−1δ) + v4(δn)λ

4(δn)
) 1

2 exp

(
−λ2(η)

8

)

≤ c5
∑

δ∈Δn(aδn)

∑
η∈Δn(δ)

δ−3

n
λ2(η)(η)D2/8. (3.18)

The number of elements in the set Δn is less than �logn/ log a� = Nn.
Thus,

∑
η∈Δn(δ)

λ2(η)ηD2/8 ≤ δD2/8−α
∑

η∈Δn(δ)

D2 log

(
1

η

)
ηα

≤ δD2/8−α
Nn∑
j=0

D2

(
1

aα

)j

log a, (3.19)

where we use the fact η = a−j for some j as η ∈ Δn. Since a > 1, then for
a small enough α (the choice to be made precise later) the series in Eq. 3.19
converges. Thus

∑
η∈Δn(δ)

λ2(η)ηD2/8 ≤ c5(δ)
D2/8−α. Finally from Eq. 3.18,

Ef [(f
∗(x)− f(x))2I(δ̄ < δn)] ≤ c6

n

∑
δ∈Δn(aδn)

δ
D2
8

−α−3

≤ c6
n

Nn∑
j=0

(
1

aα

)j

≤ c7v
2(δn)λ

2(δn),

(3.20)

where α is chosen such that 2α ≤ D2/8−3 and c7 is a constant that depends
on a. We also note that D2 can be chosen as large as desired, see the
statement after Eq. 3.11. The proof of the theorem follows from Eqs. 3.12
and 3.20.

Now we begin our analysis of the performance of such an adaptive esti-
mator over a class of functions comprising a wide Sobolev regularity scale.
At first we show that the rate of convergence in this adaptive procedure is
off only by a log n factor when compared with the minimax optimal rate of
estimation for a function f ∈ H(β)∩B(L). Such a loss of efficiency is in fact
ubiquitous in pointwise adaptive estimation of functions (e.g. over Sobolev



18 S. Arya and A. Abhishek

classes, see Tsybakov 1998) and can not be done away with. This gives us
confidence in the validity of applying the adaptive procedure as proposed in
Cavalier (2001) & Lepski et al. (1997) for the adaptive estimation of function
from its stochastic ERT data as well.

Theorem 3. Let L > 0. For any x ∈ R
2 and for any β > 1 we have:

lim sup
n→∞

sup
f∈H(β,C)∩B(L)

(
n

log n

) 2β−2
2β+1

Ef (f
∗(x)− f(x))2 < ∞.

Proof. From equation (9) in Abhishek (2022), we have that for f ∈
H(β,C)∩B(L), (fη(x)−f(x))2 ≤ c̃8η

2β−2 for all η. Then from the definition

rn(x, f) ≤ d1δ
2β−2
0 + c∗δ−3

0

logn

n

where δ−n = logn
n < δ0 < 1. If we choose δ0 = ( log nn )

1
2β+1 then we get,

rn(x, f) ≤ d1

(
log n

n

) 2β−2
2β+1

+ c∗
(
logn

n

) −3
2β+1

(
log n

n

)

= (d1 + c∗)

(
log n

n

) 2β−2
2β+1

.

Now the result follows from Theorem 2.

Remark 5. A function f ∈ B(L) is said to be locally in H(β,C) near
x0 if there exists a smooth, compactly supported cut-off function φ, i.e.
φ ∈ C∞

c (R2) with φ(x0) �= 0 such that φf ∈ H(β,C). With obvious modi-
fications, Theorem 3 is also true for such functions which are known to be
locally in H(β,C) ∩B(L) near any arbitrary fixed point x.

Finally, in the next theorem we show that there can not exist any adap-
tive estimator on the scale H(β)∩B(L) which is also optimally rate adaptive
in the sense of Remark 2. Furthermore, we also show that the estimator de-
scribed by Eq. 3.6 achieves the adaptive rate of convergence for H(β)∩B(L).
The proof is based on the methods used in Butucea (2000, 2001).

Theorem 4. Let Bn = {β1 < β2 < · · · < βNn} such that β1 > 1 is fixed
and βNn →

n→∞
∞. Then there exists no ‘optimal adaptive estimator’ over

the class H(β) ∩ B(L) for the pointwise risk given by Definition 3. At the

same time the rate ψn,β =
(

n
logn

)− β−1
2β+1

is the adaptive rate in the sense of

Definition 6.
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Proof. The first part of the theorem essentially claims the non-existence
of an adaptive estimator that is optimal across the Sobolev scale. We will

establish this result first. Let φn,β = n
− β−1

2β+1 denote the optimal minimax
rate (up to a constant) of estimation when β is known. Suppose that there
does exist an adaptive estimator achieving optimal minimax rate for every
Sobolev smoothness β. Then,

C ≥ lim sup
n→∞

sup
β∈Bn

sup
f∈H(β,c)∩B(L)

(φn,β)
−2Ef (f

∗(x)− f(x))2

≥ lim sup
n→∞

sup
β∈Bn

sup
f∈H(β,c)∩B(L)

(
φn,β

ψn,β

)−2

ψ−2
n,βEf (f

∗(x)− f(x))2

≥ lim inf
n→∞

(
sup
β∈Bn

(
ψn,β

φn,β

)2

inf
f̂n

sup
β∈Bn

sup
f∈H(β,L)

ψ−2
n,βEf (f̂n(x)− f(x))2

)
.

(3.21)

We will show that the inequality (3.21) gives us a contradiction by show-
ing that the right hand side of the above inequality is unbounded. To that
end, we prove the following lemma first.

Lemma 1. For any estimator f̂n and rate ψn,β as above we have,

lim inf
n→∞

inf
f̂n

sup
β∈Bn

sup
f∈H(β,L)

ψ−2
n,βEf (f̂n(x)− f(x))2 ≥ 1.

Proof. We will denote βNn by βN . Consider the two hypotheses, fn,0(x)
= 0 and fn,1(x) = Ahβ1−1η((x − x0)/h) where 0 < A < 1 is a constant,

h = ( log nn )
1

2β1+1 where η(x) is a compactly supported function in H(β, L)
such that η(0) = 1. It is easy to show that fn,1(x) ∈ H(β1, L) and fn,0 ∈
H(βN , L). Furthermore, one can easily find δ such that d(fn,1, fn,0) > 1−2δ
for some 0 < δ < 1/2. Note the inequality,

inf
f̂n

sup
β∈Bn

sup
f∈H(β,L)

ψ−2
n,βEf (f̂n(x)− f(x))2

≥ inf
f̂n

max
{
Efn,0 [ψ

−2
n,βN

|f̂n(x0)− fn,0(x0)|2],

Efn,1 [ψ
−2
n,β1

|f̂n(x0)− fn,1(x0)|2]
}
.

(3.22)

To establish a lower bound for the expression on the right hand side of
the inequality (3.22) above, we will use Tsybakov (1998, A1, Theorem 6).
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Let E0[·] := Efn,0 [·] and E1[·] := Efn,1 [·] and the associated probability
measures be denoted by P0 and P1 respectively. To apply Tsybakov (1998,
A1, Theorem 6), we will need to show that for 0 < α < 1 and τ > 0,

P1

[
dP0
dP1

≥ τ
]
≥ 1− α.

P1

[
dP0

dP1
≥ τ

]
= P1

[
n∏

i=1

p0(Yi)

p1(Yi)
≥ τ

]

= P1

[
1√
log n

n∑
i=1

log
p0(Yi)

p1(Yi)
≥ log τ√

logn

]
. (3.23)

Let Zn,i =
1√
logn

log p0(Yi)
p1(Yi)

which are i.i.d. random variables. Let E1[Zn,i]

and V1[Zn,i] be the expectation and variance Zn,i with respect to the proba-
bility measure P1 corresponding to the experiments with observations gener-
ated by fn,1. Let σn =

∑n
i=1 V1[Zn,i] and define Un,i = (Zn,i −E1[Zn,i])/σn.

We state the following lemma, the proof for which will be given in the
Appendix.

Lemma 2. For Zn,i and Un,i as defined above, we have,

(a)
∑n

i=1E1[Zn,i] ≥ −c8
√
logn where c8 > 0 is a small enough constant.

(b) σ2
n ≥ c9 > 0.

(c) limn→∞
∑n

i=1E1[|Un,i|3] = 0.

From part (c) in Lemma 2, we conclude that Un =
∑n

i=1Un,i converges
in law to the Normal Distribution N(0, 1) (Lyapunov’s CLT). Thus we can

rewrite P1[
∑n

i=1Zn,i≥ log τ√
logn

]=P1[Un≥mn] where mn =
log τ√
logn

−
∑n

i=1E1[Zn,i]

σn
.

Now choose τ = n−r for some r > c8 > 0 (the choice of r will be made precise

below), then using (a,b) of Lemma 2, we get mn ≤ −r
√
logn+c8

√
logn√

c9
→ −∞

as n → ∞. This shows that,

P1

[
dP0

dP1
≥ τ

]
= P1

[
n∑

i=1

Zn,i ≥
log τ√
log n

]
= P1[Un ≥ mn] → 1 as n → ∞.
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Furthermore, from Tsybakov (1998, A1 Theorem 6), it follows that for
qn > 0, τ > 0, 0 < α < 1 and 0 < δ < 1/2:

inf
f̂n

max
{
Efn,0 [ψ

−2
n,βN

|f̂n(x0)−fn,0(x0)|2], Efn,1 [ψ
−2
n,β1

|f̂n(x0)−fn,1(x0)|2]
}

≥ (1− α)(1− 2δ)2τq2nδ
2

(1− 2δ)2 + τq2nδ
2

.

Thus, to satisfy the required lower bound, take qn =
ψn,β1
ψn,βN

. Then

lim inf
n→∞

τq2n = lim inf
n→∞

n−r

(
logn

n

) 2β1−2
2β1+1

− 2βN−2

2βN+1

= lim inf
n→∞

n−r

(
logn

n

) 6(β1−βN )

(2β1+1)(2βN+1)

. (3.24)

Thus if we choose r such that 6(βN−β1)
(2β1+1)(2βN+1) > r > c8 > 0, then

lim inf
n→∞

τq2n → ∞ as n → ∞.

Consider then,

lim inf
n→∞

(1− α)(1− 2δ)2τq2nδ
2

(1− 2δ)2 + τq2nδ
2

→ 1, (3.25)

as δ and α can be chosen as small as desired. Thus from Tsybakov (1998,
A1, Theorem 6), we get:

inf
f̂n

max
{
Efn,0 [ψ

−2
n,βN

|f̂n(x0)−fn,0(x0)|2], Efn,1 [ψ
−2
n,β1

|f̂n(x0)−fn,1(x0)|2]
}
≥1.

This concludes the proof of Lemma 1.
Coming back to the proof of Theorem 4, first observe that

sup
β∈Bn

(
ψn,β

φn,β

)2

→
n→∞

∞.

This along with Lemma 1 and inequality (3.21) gives us a contradiction
showing that there can not exist an adaptive estimator that achieves the
optimal minimax rate for all β ∈ Bn. Now we prove the second part of
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Theorem 4. Let there be another adaptive estimator f∗∗(x) and another
sequence γn,β such that for any x ∈ R

2 and for any β > 1 we have,

lim sup
n→∞

sup
f∈H(β,c)∩B(L)

(γn,β)
−2Ef (f

∗∗(x)− f(x))2 < ∞.

Furthermore let there exist β′ such that
γn,β′
ψn,β′

→
n→∞

0. First of all, γn,β′ ≥

( 1n)
β′−1
2β′+1 . Now define: κr

′
n =

(
1
n

)β′−(1+ε0)

2β′+1 where ε0 > is small. Take any
β′′ > β′. We claim that,

lim inf
n→∞

γn,β′′

κr′n
= ∞. (3.26)

We will prove this claim later, but for the moment if we assume this
claim is true and consider,

γn,β′

ψn,β′

γn,β′′

ψn,β′′
≥

(
1

logn

) β′−1
2β′+1 γn,β′′

κr′n

κr
′

n(
logn
n

) β′′−1
2β′′+1

≥ γn,β′′

κr′n
n

β′′−1
2β′′+1

−β′−(1+ε0)

2β′+1

(
1

log n

) β′−1
2β′+1

+ β′′−1
2β′′+1

→ ∞. (3.27)

This follows from the assumption in the claim made above (see Eq. 3.26)
and the fact that nα1

(log n)α2
→ ∞ as long as α1 > 0 and α2 > 0. (Note also

that β′′−1
2β′′+1 − β′−(1+ε0)

2β′+1 > 0.) Thus the only thing that remains to show is

that Eq. 3.26 holds. To that end, assume lim infn→∞
γn,β′′

κr′
n

≤ C < ∞. We

will show that this gives rise to a contradiction. Recall,

lim sup
n→∞

β ∈ Bn
sup

sup
f∈H(β,c)∩B(L)

(γn,β)
−2Ef (f

∗∗(x)− f(x))2 ≤ C∗ < ∞

=⇒ lim sup
n→∞

sup
f∈H(β,c)∩B(L)

max

{(
ψn,β′

γn,β′

)2

(ψn,β)
−2Ef (f

∗∗(x)− f(x))2,

(
κr′−r
n κr

n

γn,β′′

)2

(κr′
n )−2Ef (f

∗∗(x)− f(x))2
}

≤ C∗ (r′ > r)

=⇒ lim sup
n→∞

min

{(
ψn,β′

γn,β′

)2

,

(
κr′−r
n κr

n

γn,β′′

)2}
·

lim inf
n→∞

inf
f̂

sup
f∈H(β,c)∩B(L)

max
{
(ψn,β)

−2Ef (f̂(x)−f(x))2, (κr′
n )−2Ef (f̂(x)−f(x))2

}
≤ C∗.

(3.28)
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Since r′ > r, we have

(
κr′−r
n κr

n
γn,β′′

)
→ ∞ and

(
ψn,β′
γn,β′

)
→ ∞ by hypothesis.

Finally,

lim inf
n→∞

inf
f̂

sup
f∈H(β,c)∩B(L)

max

{
E1(f̂(x)−fn,1(x))

2

(ψn,β)2
,
E0(f̂(x)−fn,0(x))

2

(κr′n )
2

}
≥ 1,

similar to what was done while proving a lower bound for inequality (3.22).

The only change is that we consider now qn =
ψn,β′

κr′
n

while proving the relation

(3.24). This gives us a contradiction by showing that the left-hand side of
inequality (3.28) is ∞.

Remark 6. This paper focuses on estimation at a fixed point. Hence, the
appearance of an extra logarithmic factor is not surprising - indeed this loss
of efficiency is quite ubiquitous in the direct estimation problems considered
in, e.g. Butucea (2000, 2001) & Tsybakov (1998). In a future article, we
intend to address the question considering other risk measures such as the
L2-risk. We expect under L2-risk the optimal adaptive rate would be the
same as the minimax non-adaptive rate.
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Appendix

Proof of Lemma 2. (a) Let the distribution function for noise be

given by pε(u) =
1√
2πσ2

e
−u2

2σ2 . For the proof of this part, first consider,

E1[Zn,i] =
1√
log n

E(θ,s)

[
E1|(θ,s)

[
log

pε(Yi)

pε(Yi − Tμfn,1(θi, si))

]]

=
−1√
log n

E(θ,s)

[∫
log

pε(Yi−Tμfn,1(θi, si))

pε(Yi)
pε(Yi−Tμfn,1(θi, si))dYi

]

≥ −1√
log n

Eθ,s(Tμfn,1(θi, s1))
2.

Recall that for fn,1 = Ahβ1−1η((x− x0)/h) where h =
(
log n
n

) 1
2β+1

, sim-

ilar to equation (18) in Abhishek (2022) we have,
∫
Z(Tμfn,1(θi, si))

2dsdθ ≤
c8h

2β+1 where c8 is a constant that can be made as small as desired by
choosing a small enough A. In particular, we will choose A such that

6(βN−β1)
(2β1+1)(2βN+1) > c8 > 0. We remark here that in deriving the estimate for∫
Z(Tμfn,1(θi, si))

2dsdθ as above, we assume that the design points satisfy
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a certain feasibility condition (Korostelëv and Tsybakov 1991, Assumption

C): E(θ,s)

[
n∑

i=1
g(θi, si)

]
≤ C3n

∫
Z

g(θ, s)dsdθ. Thus

n∑
i=1

E1[Zn,i] ≥
−1√
log n

nEθ,s(Tμfn,1(θi, s1))
2 ≥ −c8

√
log n.

Proof of part (b)Wewant to show that σ2
n=

∑n
i=1V1[Zn,i] is bounded below.

First note that from the ‘law of total variance’ V1[Zn,i]≥ E(θ,s)[V1|(θ,s)[Zn,i]].
Consider

V ar1|(θ,s)[Zn,i] =
1

logn
V ar1|(θ,s)

[
log

pε(Yi)

pε(Yi − Tμfn,1(θi, si))

]

=
1

logn

[
E1|(θ,s)

[
log2

pε(Yi)

pε(Yi − Tμfn,1(θi, si))

]

−
(
E1|(θ,s)

[
log

pε(Yi)

pε(Yi − Tμfn,1(θi, si))

])2
]
.

Recall that noise has been assumed to have a Gaussian distribution ∼
N(0, σ2) Thus,

E1|(θ,s)

[
log2

pε(Yi)

pε(Yi − Tμfn,1(θi, si))

]

=
1√
2πσ2

∫
log2 exp

(
(Yi − Tμfn,1(θi, si))

2 − Y 2
i

2σ2

)
exp

(
(Yi−Tμfn,1(θi, si))

2

2σ2

)
dYi

=
1

4σ4
√
2πσ2

∫ (
T 4
μ(fn,1(θi, si) + 4Y 2

i T
2
μfn,1(θi, si))− 4YiT

3
μfn,1(θi, si)

)

exp

(
(Yi − Tμfn,1(θi, si))

2

2σ2

)
dYi

=
1

4σ4

(
T 4
μfn,1(θi, si) + 4σ2T 2

μfn,1(θi, si)
)
. (A.1)

On the other hand,(
E1|(θ,s)

[
log

pε(Yi)

pε(Yi − Tμfn,1(θi, si))

])2

=
T 4
μfn,1(θi, si)

4σ4
.

Thus V ar1|(θ,s)[Zn,i] =
4(Tμfn,1(θi,si))

2

lognσ2 and hence,

n∑
i=1

Eθ,s[V ar1|(θ,s)[Zn,i]] =
n

σ2 log n

∫
Z
(Tμfn,1(θi, si))

2dsdθ

= c10
n

log n
h2β+1 > 0.
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Proof of part (c)

E1|U3
n,i| =

1

σ3
n

E1|Z3
n,i −(E1[Zn,i])

3− 3(Zn,i)
2E1[Zn,i] + 3(Zn,i)(E1[Zn,i])

2|

≤ 1

σ3
n

[E1|Zn,i|3 + (E1|Zn,i|)3 + 3E1|Zn,i|2E1|Zn,i|

+3E1|Zn,i|(E1|Zn,i|)2]

≤ 1

σ3
n

[E1|Zn,i|3+(E1|Zn,i|)3+3E1|Zn,i|2E1|Zn,i|+(E1|Zn,i|)3].

(A.2)

Now we consider each of the above terms one by one. First of all
E1|Zn,i| = Eθ,s[E1|(θ,s)|Zn,i|]. Thus using Pinsker’s second inequality to cal-
culate:

E1|(θ,s)|Zn,i| =
1√
log n

∫ ∣∣∣∣log
pε(Yi)

pε(Yi − Tμfn,1(θi, si))

∣∣∣∣ pε(Yi − Tμfn,1(θi, si))dYi

≤ 1√
log n

[
Tμfn,1(θi, si)

σ
+

T 2
μfn,1(θi, si)

2σ2

]
[Tsybakov, 2009, Lemma 2.5].

(A.3)

Also note that since the cylinder Z = S1 × [−1, 1] has finite measure, we
have: ∣∣∣∣

∫
Z
Tμfn,1(θ, s)dsdθ

∣∣∣∣ ≤
∫
Z
|Tμfn,1(θ, s)|dsdθ

≤ c10

(∫
Z
|Tμfn,1(θ, s)|2dsdθ

)1/2

. (A.4)

From inequalities (A.3) and (A.4), we get:

E1|Zn,i| ≤ c11√
log n

[(
log n

n

)1/2

+

(
log n

n

)]

≤ c12√
log n

(
log n

n

)1/2
(
0<

log n

n
≤
(
log n

n

)1/2

< 1 for n ≥ 3

)
.

Finally,

n∑
i=1

(E1|Zn,i|)3 ≤ c12n

(
1

n

)3/2

→ 0 as n → ∞. (A.5)
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Using Eq. A.1, we have:

E1|(θ,s)[|Zn,i|2] ≤
1

4σ4 log n

(
T 4
μfn,1(θi, si) + 4σ2T 2

μfn,1(θi, si)
)
.

Then using the fact that |Tμfn,1(θi, si)| ≤ c13h
β

2β+1 = c13

(
log n
n

) β
2β+1

,

E1[|Zn,i|2] ≤ c14
logn

[(
logn

n

) 4β
2β+1

+

(
log n

n

) 2β
2β+1

]

≤ c15
logn

[(
logn

n

) 2β
2β+1

]

(
0 <

(
logn

n

) 4β
2β+1

≤
(
log n

n

) 2β
2β+1

< 1 for n ≥ 3

)
.

Finally,

n∑
i=1

E1|Zn,i|2E1|Zn,i| ≤ c16
n

log n

1√
log n

(
log n

n

) 6β+1
4β+2

≤ c16
1√
log n

(
log n

n

) 2β−1
4β+2

→ 0 as n → ∞.

(A.6)

Now we consider
∑n

i=1E1|Zn,i|3. For this we first evaluate:

E1|(θ,s)|Zn,i|3

=
1

(log n)3/2

∫ ∣∣∣∣log
pξ(Yi)

pε(Yi − Tμfn,1(θi, si))

∣∣∣∣
3

pε(Yi − Tμfn,1(θi, si))dYi

≤ 1

(log n)3/2

∫ [∣∣T 2
μfn,1(θi, si)− 2YiTμfn,1(θi, si)

∣∣]3 pε(Yi − Tμfn,1(θi, si))dYi

≤ 1

(log n)3/2

∫ [ ∣∣T 6
μfn,1(θi, si)

∣∣+ 8 |Yi|3
∣∣T 3

μfn,1(θi, si)
∣∣+ 12 |Yi|2

∣∣T 4
μfn,1(θi, si)

∣∣

+6 |Yi|
∣∣T 5

μfn,1(θi, si)
∣∣
]
exp (−(Yi − Tμfn,1(θi, si))

2/2σ2)√
2πσ2

dYi

≤ c16
(log n)3/2

(
log n

n

) 6β
2β+1

,
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where the last inequality follows from the previous one by integrating each

term and using the fact that |Tμfn,1(θi, si)| ≤ c13

(
log n
n

) β
2β+1

. Thus:

n∑
i=1

E1|Zn,i|3 ≤ c17

(log n)1/2
n

logn

(
log n

n

) 6β
2β+1

≤ c17

(log n)1/2

(
log n

n

) 4β−1
2β+1

→ 0 as n → ∞. (A.7)

Equations A.2, A.5, A.6 and A.7 together prove part (c).
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