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Summary
Delayed rewards problem in contextual bandits has been of interest in various practical settings.
Westudy randomizedallocation strategies andprovide anunderstandingonhowtheexploration-
exploitation tradeoff is affected by delays in observing the rewards. In randomized strategies,
the extent of exploration-exploitation is controlled by a user-determined exploration probability
sequence. In the presence of delayed rewards, one may choose between using the original explo-
ration sequence that updates at every timepoint or update the sequence onlywhen a new reward
is observed, leading to two competing strategies. In this work, we show that while both strategies
may lead to strong consistency in allocation, the property holds for awider scope of situations for
the latter. However, for finite sample performance, we illustrate that both strategies have their
ownadvantages anddisadvantages, dependingon the severity of thedelay andunderlying reward
generatingmechanisms.
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1 INTRODUCTION
Contextual bandits provide a natural framework tomodel a lot of practical sequential decisionmaking problems in various fields. ? started studying
multi-armed bandit problems with side information in a parametric framework, and ? initiated an investigation from a nonparametric perspective.
See ?;? for reviews on general sequential problems and ? for bandits exclusively. In recent years, bandit problems have gained popularity and have
been studied extensively under different names, such as contextual bandits, multi-armed bandits with covariates (MABC), associative bandit prob-
lems andmulti-armed bandits with side information. For example, when treating patients of a disease, the doctor needs to decide which treatment
amongst several competing treatments would be the best for the current patient, given the patient’s covariate information and data available from
previous patients. Most of the bandit algorithms assume instantaneous observance of rewards, but in most practical situations, rewards are only
obtained at some delayed time. For example, it is often the case that several other patients have to be treated before the outcome for the current
patient is observed. One way to tackle this problem is to adopt black-box procedures incorporating delayed rewards using the already existing no-
delaypolicies in the stochastic bandits setting.However,wepresent a caseofwhy it is important to studydelaysmore carefully for contextual bandit
strategies based on the context of the problem, rather than always using the already existing no delay bandit strategies in black-box procedures to
incorporating delayed rewards. Delays in observing the rewards could affect the performance of bandit algorithms in different ways, depending on
the nature of underlying data generatingmechanisms and severity of the delays. Thus, it is important to balance the exploration-exploitation trade-
off taking these aspects into consideration, in order to utilize most of the available information. We propose two different ε-greedy like strategies
incorporating delayed reward, which differ in how the exploration probability gets updated with the available information. We illustrate that both
strategies can be advantageous in different situations, based on the complexity of the underlying data generating mechanism and the severity of
the delays.
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2 SETUPANDRELATED LITERATURE
The setup of stochastic contextual bandits is as follows. Suppose there are ` > 1 competing arms. The covariates are assumed to be random vari-
ables generatedaccording to anunknownunderlyingprobability distributionPX supported in [0, 1]d. A bandit strategyor policy is a randomfunction
from [0, 1]d to {1, 2, . . . , `} that decides which arm gets pulled for a given covariate. At time j ≥ 1, let Ij be the arm allocation made by the bandit
strategy based on previous information and present contextXj. We denoteYi,j to be the reward obtained for arm i = Ij. Let fi(x) denote the mean
reward for the ith armwith covariate x. We adopt a regression perspective tomodel the relationship between covariates and rewards,

Yi,j = fi(Xj) + εj

where εj’s are independent errors with E(εj) = 0 and Var(εj) <∞ for j ≥ 1.
Now, the problem can be viewed as one of estimating the mean reward functions fi(x) for i ∈ {1, . . . , `} and allocating arms based on the

estimators f̂i. Both parametric and non-parametric approaches for estimating fi have beenwell studied, see ?, ? for reference. In this workwe follow
a nonparametric approachwith delayed rewards as in ? adoptingmodeling techiques similar to the earlier work of ?, ??.
In our setup, the rewards can be obtained at some delayed time, which we denote by {tj ∈ R+, j ≥ 1}. The delay in the reward for pulling arm Ij

is given by the random variable, dj := tj − j. We assume that {dj : dj ≥ 0, j ≥ 1} is a sequence of independent random variables. Let the number of
rewards obtained at time n be denoted by τn =

∑n
j=1 I(tj ≤ n), also a random variable.

We devise two sequential allocation strategies η1 and η2 in Section 3, incorporating delayed rewards, such that they choose arms sequentially
based on previous observations and present covariates. As ameasure of performance of each of the strategies, we consider the following ratio,

Rn(·) =
∑n

j=1 fIj (Xj)∑n
j=1 f∗(Xj)

, (1)
where (·) is used to denote the strategy being considered. Here, f∗(x) = max1≤i≤` fi(x) is the theoretical best mean reward functional value at x,
and i∗(x) is the corresponding arm. Then, we establish strong consistency for both strategies for the histogram method in Section 4.1, that is, we
show that Rn(η1) → 1 and Rn(η2) → 1with probability 1, as n → ∞. In addition, from a finite-sample performance perspective, we compare the
two allocation strategies and illustrate how both can be advantageous in different situations in Sections 4.3 and 5.
In the stochastic setting, delayed rewards have been studied previously by ?, ?where the former considers constant known delay for contextual

bandits while the latter provides a more systemic study of online learning problems with random delayed rewards (without covariates). ? develop
meta-algorithms which in a black-box fashion use algorithms developed for the non-delayed case into the ones that can handle delays in a feed-
back loop. Then, ? devise a method that guarantees good black-box algorithms when leveraging a prior dataset and incorporating heuristics to help
improve empirical performance of the algorithms. ? use Gaussian process bandits and develop algorithms for parallelizing exploration-exploitation
trade-offs. Motivated by delayed conversions in advertising, ?? consider potentially infinite stochastic delays, where the latter deals with the con-
textual case with a linear regression model and does not assume prior knowledge of delay distribution unlike the former. Recently, ? design a
delay-adaptive algorithm for generalized linear contextual bandits usingUCB-style exploration. ? consider potentially infinite delays in nonparamet-
ric bandits and provide strong consistency results for a proposed algorithm.Otherworks include ?, ?where the former considersGittins procedures
for bandits with delayed rewards, while the latter is motivated by applications in music streaming. Apart from the stochastic setting, ???? study
delayed rewards in the adversarial setting, while ??? study the delayed anonymous composite feedback setting.

3 THE PROPOSED STRATEGIES
DefineZn,i to be the set of observations for arm iwhose rewards havebeenobservedby timen−1, that is,Zn,i := {(Xj,Yi,j) : 1 ≤ tj ≤ n−1 and Ij =

i}. Let f̂i,n denote the regression estimator of fi based on the data Zn,i. Let {πj, j ≥ 1} be a sequence of positive numbers in [0, 1] decreasing to zero,
such that (` − 1)πj < 1 for all j ≥ 1. We propose two strategies η1 and η2 with a subtle difference in the arm selection step but same structure of
the algorithm.

3.1 Algorithms
Step 1. Initialize. Allocate each arm once, I1 = 1, I2 = 2, . . . , I` = `. Since the rewards are not immediately obtained for each of these ` arms, we

continue these forced allocations until we have at least one reward observed for each arm. Suppose, that happens at timem0.
Step 2. Estimate the individual functions fi. For n = m0 + 1, based onZn,i, estimate fi by f̂i,n for 1 ≤ i ≤ ` using the chosen regression procedure.
Step 3. Estimate the best arm. ForXn, let în(Xn) = argmax1≤i≤` f̂i,n(Xn).
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Step 4. Select and pull.Recall, τn =
∑n

j=1 I(tj ≤ n) is the number of rewards observed by time n.

(a) Strategy η1: In =

în, with probability 1− (`− 1)πn

i, with probability πn, i 6= în, 1 ≤ i ≤ `.

(b) Strategy η2: In =

în, with probability1− (`− 1)πτn

i, with probability πτn , i 6= în, 1 ≤ i ≤ `.

Step 5. Update the estimates.
Step 5a. If a reward is obtained at the nth time (could be one ormore rewards corresponding to one ormore arms Ij, 1 ≤ j ≤ n), update the

function estimates of fi for the respective arm (or arms) for which the reward (or rewards) is obtained at nth time.
Step 5b. If no reward is obtained at the nth time, use the previous function estimators, i.e. f̂i,n+1 = f̂i,n ∀ i ∈ {1, . . . , `}.

Step 6. Repeat.Repeat steps 3-5 when the next covariateXn+1 surfaces and so on.

In the algorithms above, Step 1 initializes the allocations by pulling each arm alternatively until we observe at least one reward for each arm. Step
2 estimates the mean reward function for each arm. This could be done using several regression methods, we use kernel regression and histogram
method in thiswork. Steps 3 and 4 enforce an ε-greedy type of randomization schemewhich prefers the best performing arm so farwith someprob-
ability and explores with the remaining. The preference is determined by user determined sequence of exploration probability {πn, n ≥ 1}, which
for strategy η2 only gets updated when a new reward is observed, that is, πτn . While for strategy η1, it is updated at every time point irrespective of
a reward being observed or not, that is, πn. Hence, the two strategies differ in the extent of exploration and exploitation that is allowed over time.
Finally, in Step 5, the mean reward function estimators are updated if new rewards are observed or they remain the same if no new rewards are
observed. For notational convenience, we use {·} to denote a user-determined sequence, such as {πn}, when we only want to refer to the original
sequence selected by the user, without distinguishing betweenwhen it gets updated.

4 CONSISTENCYOF THE PROPOSED STRATEGIES
LetAn := {j : tj ≤ n}, denote the time points corresponding to the rewards observed by time n.
Assumption 1. The regression procedure is strongly consistent in L∞ norm for all individual mean functions fi under the proposed allocation
scheme. That is, ||̂fi,n − fi||∞

a.s.→ 0 as n→∞ for each 1 ≤ i ≤ `, where f̂i,n is the estimator based on all previously observed rewards.
Note that, due to the presence of delays, the mean reward function estimators f̂i,n are only updated at the time points where a new reward is

observed. Next, wemake amild assumption on themean reward functions.
Assumption 2. Themean reward functions are continuous and fi(x) ≥ 0 such that,

A = sup
1≤i≤`

sup
x∈[0,1]d

(f∗(x)− fi(x)) <∞ and E(f∗(X1)) > 0.

Assumption 3. Let the partial sums of delay distributions satisfy, E(τn) = Ω(q(n)) 1, where q(n) is a sequence that acts as a lower bound to the
expected number of observed rewards by time n, and q(n)→∞ as n→∞.
Theorem 1. Under Assumptions 1, 2 and 3, the allocation rules η1 and η2 are strongly consistent as n → ∞, i.e., Rn(η1) → 1 and Rn(η2) → 1with
probability 1, as n→∞.
Proof. Note that consistency holds only when the sequence {πn, n ≥ 1} is chosen such that {πn} → 0 as n → ∞. The proof is very similar to the
proof in ?withminor changes for strategy η2 which are included in the supporting information (Section 6).
Note that Assumption 1, seemingly natural, is a strong assumption and it requires additional work to verify it for a particular regression setting.

We verify this assumption for the histogrammethod in Section 4.1 and for the kernel method in Section 4.2.

1f(n) = Ω(g(n)) if for some positive constant c, f(n) ≥ cg(n)when n is large enough
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4.1 Histogrammethod
In this section, we consider the histogram method for the setting with delayed rewards. We assume that the binwidth h is chosen such that 1/h is
an integer. At time n, partition [0, 1]d intoM = (1/hτn )

d hyper-cubes with binwidth hτn , where τn is the number of observed rewards by time n. For
some x ∈ [0, 1]d such that it falls in a hypercube B(x), let J̄i(x) = {j : Xj ∈ B(x), tj ≤ n, Ij = i} and N̄i(x) be the size of J̄i(x). Then the histogram
estimate for fi(x) is defined as,

f̂i,n(x) =
1

N̄i(x)

∑
j∈J̄i(x)

Yj. (2)

For the estimator to behave well, a proper choice of the binwidth, {hn} is necessary. Note that, we only update hn to hn+1 when a new reward is
observed, hencewe denote it as hτn . For notational convenience, when the analysis is focused on a single arm, i is dropped from the subscript of f̂ , N̄
and J̄. Next, using the histogrammethod for estimation, we prove that strong consistency holds for both strategies η1 and η2 in Section 3.1.
As already discussed, we only need to verify that Assumption 1 holds for histogram method. Along with Assumptions 2 and 3, we make the

following assumptions.
Assumption 4. The design distribution PX is dominated by the Lebesgue measure with a density p(x) uniformly bounded above and away from 0
on [0, 1]d; that is, p(x) satisfies c ≤ p(x) ≤ c̄ for some positive constants c < c̄.
This assumption is needed to make sure that all regions in the covariate space are observed with positive probability, in order to ensure good

estimation in all regions.
Assumption 5. The errors satisfy a moment condition that there exists positive constants v and c such that, for all integersm ≥ 2, the extended
Bernstein condition (??) is satisfied, that is,

E|εj|m ≤
m!

2
v2cm−2.

This condition on the errors holds in a lot of settings, for example, normal distribution and bounded errors meet this requirement, thusmaking it
useful in a wide range of applications.
The next two assumptions aremade on the nature of the delays in observing rewards, so thatwe could ensure that delays are not being confounded
by other factors andwe observe aminimum number of rewards with time, so as to ensure proper and effective learning.
Assumption 6. The delays, {dj, j ≥ 1}, are independent of each other, the choice of arms and also of the covariates.
Along with these assumptions, we define themodulus of continuity that is used in the following results.

Definition 1. Themodulus of continuity,w(h; f), is defined by,w(h; f) = sup{|f(x1)− f(x2)| : |x1k− x2k| ≤ h for all 1 ≤ k ≤ d}, for x1, x2 ∈ [0, 1]d.

Lemma 1 (An inequality for Bernoulli trials.). For 1 ≤ j ≤ n, let W̃j be Bernoulli random variables, which are not necessarily independent. Assume
that the conditional probability of success for W̃j given the previous observations is lower bounded by βj, that is,

P(W̃j = 1|W̃i, 1 ≤ i ≤ j− 1) ≥ βj a.s.,
for all 1 ≤ j ≤ n. Applying the extended Bernstein’s inequality as described in ?, we have

P

 n∑
j=1

W̃j ≤

 n∑
j=1

βj

 /2

 ≤ exp

(
−

3
∑n

j=1 βj

28

)
. (3)

Lemma 2. Let ε > 0 be given. Suppose that h is small enough such thatw(h; f) < ε. Then the histogram estimator f̂n satisfies,
Pη1
An,Xn (||̂fn − f||∞ ≥ ε) ≤ M exp

(
−

3πn min1≤b≤M Nb

28

)
+ 2M exp

(
−
min1≤b≤M Nbπ

2
n(ε− w(hτn ; f))2

8(v2 + c(πn/2)(ε− w(hτn ; f)))

)
, (4)

Pη2
An,Xn (||̂fn − f||∞ ≥ ε) ≤ M exp

(
−

3πτn min1≤b≤M Nb

28

)
+ 2M exp

(
−
min1≤b≤M Nbπ

2
τn
(ε− w(hτn ; f))2

8(v2 + c(πτn/2)(ε− w(hτn ; f)))

)
, (5)

wherePAn,Xn denotes conditional probability given design pointsXn = (X1, . . . ,Xn) andAn = {j : tj ≤ n}. Here,Nb is the number of design points
for which the rewards have been observed by time n such that they fall in the bth small cube of the partition of the unit cube at time n.
Proof. The proof of Lemma 2 is similar to ? so we skip it here. For strategy η1, it is easy to see that a similar lemmawith hn replaced by hτn could be
derived. For strategy η2, πn is replaced by πτn and hn replaced by hτn . This is because the result is a conditional probability result, and givenAn and
Xn, τn is a known quantity.
Theorem 2. Suppose Assumptions 2-6 are satisfied.
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a) If {hn} and {πn} are chosen to satisfy,

h2
q(n)

π2
nq(n)

log n
→∞ as n→∞, (6)

then the histogram estimator in (2) is strongly consistent in the L∞ norm for strategy η1, hence η1 is strongly consistent.
b) If {hn} and {πn} are chosen to satisfy,

h2
q(n)

π2
q(n)

q(n)

log n
→∞ as n→∞, (7)

then the histogram estimator in (2) is strongly consistent in the L∞ norm for strategy η2, hence η2 is strongly consistent.
Proof. The proofs for a) and b) are quite similar, so we prove b) here and consequently discuss a). Given An, the indices corresponding to when
rewards were obtained, we know that at time n, the histogrammethod partitions the unit cube intoM = (1/hτn )

d small cubes. For each small cube
Bb, 1 ≤ b ≤ M, in the partition, letNb =

∑n
j=1 I(Xj ∈ Bb, tj ≤ n). Note that givenAn, PAn (Xj ∈ Bb, tj ≤ n) = PAn (Xj ∈ Bb) ≥ chd

τn
, thus using

inequality (3) we have,
PAn

(
Nb ≤

chd
τn
τn

2

)
≤ exp

(
−

3chd
τn
τn

28

)
⇒ PAn

(
min

1≤b≤M
Nb ≤

chd
τn
τn

2

)
≤ exp

(
−

3chd
τn
τn

28

)
. (8)

Recall, τn =
∑n

j=1 I{tj ≤ n}. First, we show that τn
a.s.→∞ as n→∞ for both strategies, η1 and η2. By Assumption 3 and the inequality (3) in Lemma

1we have that for a large enough n, there exists a positive constant a1 > 0 such that, E(τn) ≥ a1q(n), therefore,
P

(
τn ≤

a1q(n)

2

)
≤ P

(
τn ≤

E(τn)

2

)
≤ exp

(
−

3E(τn)

28

)
≤ exp

(
−3a1q(n)

28

)
.

It is easy to see that the upper bound is summable in n under the conditions (6) and (7). By Borel-Cantelli lemma, this implies that event {τn >

a1q(n)/2} happens infinitely often, therefore τn
a.s.→ ∞. Note that, by construction this implies that hτn

a.s.→ 0, and πτn

a.s.→ 0 as n → ∞. Letw(hτn ; fi)

be the modulus of continuity as in Definition 1. Then, continuity of fi leads to the conclusion thatw(hτn ; fi)
a.s.→ 0 as n → ∞. Thus, for any ε > 0, for

large enough n, when hτn is small enough, ε− w(hτn ; fi) ≥ ε/2, almost surely. Consider,
PAn

(
||̂fi,n − fi||∞ ≥ ε

)
= PAn

(
||̂fi,n − fi||∞ ≥ ε, min

1≤b≤M
Nb >

chd
τn
τn

2

)
+ PAn

(
||̂fi,n − fi||∞ ≥ ε, min

1≤b≤M
Nb ≤

chd
τn
τn

2

)

≤ EXn
PAn,Xn

(
||̂fi,n − fi||∞ ≥ ε, min

1≤b≤M
Nb >

chd
τn
τn

2

)
+ PAn

(
min

1≤b≤M
Nb ≤

chd
τn
τn

2

)
,

where we use law of iterated expectation in the first term and EXn denotes expectation with respect toXn. From (5) and (8), we get that,
PAn

(
||̂fi,n − fi||∞ ≥ ε

)
≤ M exp

(
−

3cπτn hd
τn
τn

56

)
+ 2M exp

(
−
chd
τn
π2
τn
τn(ε− w(Lhτn ; fi))

2

8(v2 + c(πτn/2)ε)

)
+ M exp

(
−

3chd
τn
τn

28

)
. (9)

Now consider,
P(||̂fi,n − fi||∞ > ε) ≤ P

(
||̂fi,n − fi||∞ ≥ ε, τn >

E(τn)

2

)
+ P

(
τn ≤

E(τn)

2

)
≤ EAn PAn

(
||̂fi,n − fi||∞ ≥ ε, τn >

E(τn)

2

)
+ P

(
τn ≤

E(τn)

2

)
. (10)

Let ne = bE(τn)/2c. Then, by using condition (7) and (9) in (10), we have that, for large enough n,
P(||̂fi,n − fi||∞ > ε) ≤ M exp

(
−

3cπne hd
ne

ne

56

)
+ 2M exp

(
−
chd

ne
π2

ne
ne(ε− w(Lhne ; fi))

2

8(v2 + c(πne/2)(ε)

)
+ M exp

(
−

3chd
ne

ne

28

)
+ exp

(
−

3ne

14

)

≤ M exp

(
−

3c̃πq(n)hd
q(n)

q(n)

112

)
+ 2M exp

(
−
c̃hd

q(n)
π2

q(n)
q(n)(ε− w(Lhq(n); fi))

2

16(v2 + c(πq(n)/2)(ε)

)

+ M exp

(
−

3c̃hd
q(n)

q(n)

56

)
+ exp

(
−

3a1q(n)

28

)
. (11)

where, c̃ is a new constant that incorporates functions of a1 and c. It can be seen that the above upper bound is summable in n under the condition
hd

q(n)
π2

q(n)
q(n)

log n
→∞. (12)

Since ε is arbitrary, by the Borel-Cantelli Lemma, we have that ||̂fi,n − fi||∞ → 0, almost surely. This is true for all arms 1 ≤ i ≤ `. Note that the
result a) is similarly obtained by using (4) from Lemma 2 to obtain a result similar to (9) but with πn instead of πτn . Now, we can invoke Theorem1 to
establish strong consistency for both the strategies using the histogrammethod.
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4.2 Kernel Regression
We can obtain analogous results for strong consistency of strategy η1 and η2 using Nadaraya-Watson estimator. Consider a nonnegative kernel
functionK(u) : Rd → R that satisfies the following Lipschitz and boundedness conditions.
Assumption 7. For some constants 0 < λ <∞, |K(u)− K(u′)| ≤ λ||u− u′||∞, for all u, u′ ∈ Rd.
Assumption 8. ∃ constants L1 ≤ L, c3 > 0 and c4 ≥ 1 such thatK(u) = 0 for ||u||∞ > L,K(u) ≥ c3 for ||u||∞ ≤ L1, andK(u) ≤ c4 for all u ∈ Rd.
Recall, τn =

∑n
j=1 I(tj ≤ n), the number of observed rewards by time n. Define, Ji,n+1 = {j : Ij = i, tj ≤ n, 1 ≤ j ≤ n}, that is, the set of time

points corresponding to pulling of arm iwhose rewards have been observed by time n. LetMi,n+1 denote the size of Ji,n+1.
Let hτn denote the bandwidth, where hτn → 0 almost surely as n→∞. For each arm i, the Nadaraya-Watson estimator of fi(x) is defined as,

f̂i,n+1(x) =

∑
j∈Ji,n+1

Yi,jK
(

x−Xj

hτn

)
∑

j∈Ji,n+1
K
(

x−Xj

hτn

) . (13)

Theorem 3. Suppose Assumptions 2-8 are satisfied, and,
1. If {hn} and {πn} are chosen to satisfy,

q(n)h2d
q(n)

π4
n

log n
→∞,

then the Nadaraya-Watson estimator defined in (13) is strongly consistent in L∞ norm for strategy η1.
2. If {hn} and {πn} are chosen to satisfy,

q(n)h2d
q(n)

π4
q(n)

log n
→∞,

then the Nadaraya-Watson estimator defined in (13) is strongly consistent in L∞ norm for strategy η2.
Proof. The proof for this theorem can be found in the supportingmaterial (Section 6).

4.3 Strategy η1 versus Strategy η2

? conduct an analysis for the randomized allocation strategywith hn, πn, that is, when both sequences are updated at every time point regardless of
the delays, and establish its strong consistency. It states that, for q(n) as in Assumption 6, if hn, πn are chosen to satisfy,

hd
nπ

2
nq(n)

log n
→∞ as n→∞, (14)

then the proposed allocation rule is strongly consistent for the histogram method. Note that, in terms of handling the delays, this allocation rule
is in the opposite direction of the black-box approach that simply applies an existing method on the available data (i.e., ignoring all the cases with
unobserved rewards at the time of decision). The sharp contrast called for the present investigation of the alternative ways to use πn and hn and
understand their relative strengths andweaknesses.
Now ifwe compare (6), (7) and (14),we see that (14)⇒ (7)⇒ (6), but not vice versa, therefore (6) seems to givemoreoptions for the choiceof the

user-determined sequences, {hn} and {πn}, to achieve consistencywhile theremay be a trade-off in the rate of decrease of the average cumulative
regret aswewill see in the simulations. Note that, we notice a similar relationship in Theorem3when using Kernel regression. To understandwhich
choices of hyper-parameter sequences helpminimize the cumulative regret, let us consider the regret for a strategy η,

RN(η) =

N∑
j=m0+1

(f∗(Xj)− fIj (Xj)) =

N∑
j=m0+1

(fi∗j
(Xj)− f̂i∗j

(Xj) + f̂i∗j
(Xj)− f̂Ij (Xj) + f̂Ij (Xj)− fIj (Xj))

≤
N∑

j=m0+1

(fi∗j
(Xj)− f̂i∗j

(Xj) + f̂̂ij
(Xj)− f̂Ij (Xj) + f̂Ij (Xj)− fIj (Xj))

≤
N∑

j=m0+1

2 sup
1≤i≤`

|fi(Xj)− f̂i(Xj)|+ AI{Ij 6= îj}.

Thus we can roughly decompose the cumulative regret into estimation error and randomization error. For the no-delay setting, ? study both these
error components in a finite-time setting and show that, {hn} and {πn} can be chosen to achieve an optimal (minimax) rate of convergence for the
regret. In their work, the choices of {hn} and {πn} also depend on the smoothness parameter of the mean reward functions. Thus in situations
where the mean reward functions are simple and smoother, {hn} and {πn} are chosen to be fast decaying to achieve optimal rates of convergence
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in no-delay situations. In contrast, for scenarios where the underlying mean reward functions are more complex, they are chosen to be relatively
slow decaying in order to guarantee optimal rates. Now the question that arises in the presence of delayed rewards is that, how should sequences
{hn} and {πn} be updated, so as to minimize the resulting cumulative regret? That is, should one update πn to πn+1 (and hn to hn+1) at every time
point irrespective of observing a reward or only update upon observing a new reward. Let us try to understand the impact of delay and the reward
generatingmechanisms on the two components of cumulative regret to answer this question.
Different nonparametricmethodsmaybeused for estimationpurposes, andestimation accuracy largely dependson the complexity of theunder-

lyingmean reward functions and the amount of data available for estimation. The binwidth ofmethods like histogram and kernel regression, usually
is a function of the number of data points available for estimation at a given point. Therefore, in the presence of delayed rewards, hτn (τn being the
number of observed rewards until n) seems to be the sensible choice for the binwidth. Choosing hnmay lead to inefficient estimation due to unavail-
ability of data points in some small neighborhoodof [0, 1]d. Therefore, employing a binwidth sequence that guarantees optimal rates of convergence
in the no-delay setting, which updates only when a new reward is obtained, seems to be the right choice from an estimation point of view. Hence,
we only consider the policies (η1 and η2) that employ hτn as the chosen binwidth sequence. It is important to note that from an asymptotic point of
view, based on our theoretical results (Theorem 2), estimation will improve with time, but this discussion is from a finite time perspective.
In terms of randomization error, delayed rewards affect this directly through the randomization scheme. This is tied to the exploration-

exploitation dilemma which is in turn controlled by the exploration probability {πn}. In the following illustrations, we try to convey the message
of why carefully balancing exploration-exploitation is tied to updating the sequence {πn} carefully in the presence of delayed rewards, and the
decision to do that can vary in different situations.
Illustration 1. Suppose that the mean reward functions are not too complex and are well-separated. In this setting, it will be easy to get good

functional estimates over time, even with less observed data due to presence of large delays. Since the no-delay case is well-studied, for such a
setting we could choose an exploration probability sequence {πn} that gives the optimal rate of convergence according to ?. Now, with the delays,
we need to decide whether we want to update πn to πn+1 for each n or only when a new reward is observed. In this setting, it would perhaps be
advantageous to opt for strategy η1, which updates at every time step irrespective of whether a reward is obtained or not. This is because using
strategy η2 may lead to excessive exploration which may be unnecessary in such settings even for large delay situations. Thus using η1 will lead to
a smaller randomization error. In order to illustrate that, let Randj(η1) and Randj(η2) denote the indicator I(Ij 6= îj) for η1 and η2, respectively. Let
σt = min{n̄ :

∑n̄
j=m0+1 I(tj ≤ N) ≥ t}, that is, σt is the time index where the tth reward is observed. Thenwe have that,

EAN
(

N∑
j=m0+1

Randj(η2)) =

N∑
j=m0+1

Pη2,AN
(Ij 6= îj) =

τN∑
t=1

(σt+1 − σt)(`− 1)πt, (15)

whereEAN
denotes conditional expectationgivenAN, the set of indiceswhen the rewardswereobservedby timeN. Here, τN =

∑N
j=m0+1 I(tj ≤ N),

number of rewards observed between timem0 andN. However, for strategy η1, since the exploration probability {πj} does not depend on delays,
we have that,

E(
N∑

j=m0+1

Randj(η1)) =

N∑
j=m0+1

Pη1 (Ij 6= îj) =

N−m0−1∑
j=1

(`− 1)πj. (16)

For brevity sake, let us denote N̄ = N−m0 − 1 andwe start the counting process atm0 + 1. Now, given τN, theminimum value that we can get for
the R.H.S. in (15) is when all the rewards fromm0 + 1 until τN are observed instantaneously and after that no reward is observed until we hit the
horizon N̄. Likewise, an approximate maximum value of R.H.S. in (15) is achieved when the rewards for (m0 + 1)th through (N̄− τN)

th arms are not
observed until time (N̄− τN), and we observe τn many, from time N̄− τN + 1 to N̄ respectively. Therefore,

min
AN

EAN
(

N∑
j=m0+1

Randj(η2)) = (`− 1)[

τN−1∑
t=1

πt + (N̄− τN)πτN ],

max
AN

EAN
(

N∑
j=m0+1

Randj(η2)) = (`− 1)[(N̄− τN)π1 +

τN∑
t=2

πt].

For the sake of illustration, assume that we observe a fraction of N̄ by timeN, that is, τN = αN̄, for someα ∈ (0, 1). Thenwe have that,

min E(
N∑

j=m0+1

Randj(η2)) = (`− 1)[

τN−1∑
t=1

πt + (1− α)N̄πτN ], (17)

max E(
N∑

j=m0+1

Randj(η2)) = (`− 1)[(1− α)N̄π1 +

τN∑
t=2

πt]. (18)
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Notice that the terms (1 − α)N̄π1 and (1 − α)N̄πτN in the RHS in (17) and (18) can be fairly large and grow as N increases for all reasonably fast
choices of {πn} such as, n−1/4, log−1 n. From (16), (17) and (18), we also get that,

N̄∑
t=τN+1

(`− 1)(πτN − πt) ≤ E(
N∑

j=m0+1

Randj(η2)− Randj(η1)) ≤
N̄∑

t=τN+1

(`− 1)(π1 − πt), (19)

where it can be seen that∑N̄
t=τN+1(`− 1)(πτN − πt) > 0 for anyN and∑N̄

t=τN+1(`− 1)(π1 − πt) → ∞ asN → ∞. Therefore, we see that using
strategy η1, which updates πn at every time step irrespective of having observed a reward or not, gives a lower randomization error on average as
compared to strategy η2. For example, if we choose {πn} = n−1/4, α = 0.25 (one-fourth of rewards observed) andm0 = 30 (initialization phase),
time horizonN = 10000, then we get that the average randomization error difference approximately satisfies,

0.02(`− 1) ≤
E(∑N

j=m0+1 Randj(η2)− Randj(η1))

N− (m0 + 1)
≤ 0.23(`− 1), forN = 10000,m0 = 30.

In situations where mean reward functions are not complex, the randomization error can be quite large and potentially dominate over the
estimation error. Thus, using strategy η1 may reduce the cumulative regret substantially as compared to strategy η2 in such situations.
Illustration 2. On the other hand, there are situations in which it may be better to use strategy η2 with πτn (updating only when a new reward

is observed) as the exploration probability sequence. For example, scenarios where the best arms frequently alternate over regions of covariate
space in terms of maximizing reward and it is hard to tell a clear winner with less information available due to presence of large delays. Another
such situation is when an armwhich is inferior in majority of the covariate space, but is superior with a substantial reward gain in a very small area
of the domain and it might be the case that under large delays these under-represented regions remain unexplored. As described, let us assume
that the underlying mean reward functions are somewhat complex. In such settings, we would need substantial exploration for a long period of
time, specially in the presence of large delays. Here, in the hope of reducing the randomization error, we could employ strategy η1 and use an
exploration probability sequence πn, which meets the conditions in ? that ensure optimal convergence rates in no-delay situations. However, this
could be disadvantageous in such complex settings. This is because using η1 may lead to insufficient exploration for the inferior arms. We consider
the event that a seemingly inferior arm is chosen at time t, that is, I(It 6= ît). Then to ensure enough exploration, we need that this event occurs with
a positive probability that is not too small, specially in such complex settings as discussed above. From ? and ? for no delay settings, we know that
it is necessary to have∑∞t=1 πt = ∞ for the algorithm to perform optimally both asymptotically and in finite time. We also know that τN

a.s.→ ∞ as
N→∞. Therefore, using both these facts, the sum of probability of the event {I(It 6= ît), t ≥ 1}, over the time points where rewards are observed
for strategy η2 goes to∞,

τN∑
t=1

Pη2 (It 6= ît) =

τN∑
t=1

(`− 1)πt
a.s.→∞, asN→∞,

whereas, for η1, this sum could actually be summable for large delay situations. Let σt = min{n̄ :
∑n̄

j=m0+1 I(tj ≤ N) ≥ t}. Let us assume that the
observed rewards are equally spaced, that is, σt = tN/τN, assuming w.l.o.g thatN/τN is an integer. Then, we have,

τN∑
t=1

Pη1 (It 6= ît) =

τN∑
t=1

(`− 1)πσt =

τN∑
t=1

(`− 1)πtN/τN
.

Now, it can be shown that this series is summable for various choices of {πn}. For example, let {πn} = n−1/2, then for strategy η1,
τN∑

t=1

Pη1 (It 6= ît) =

τN∑
t=1

(`− 1)πtN/τN
=

τN∑
t=1

(
tN

τN

)−1/2

=

(
N

τN

)−1/2 τN∑
t=1

t−1/2 = O

(
τN√

N

)
. (20)

If the number of observed rewards are small, say τN = O(
√

N), then the series in (20) is summable. Therefore by Borel-Cantelli Lemma, the event
{It 6= ît} occurs only finitelymany times out of all instanceswhere the rewards are observed. This will lead to insufficient exploration andmay incur
large regret in areas that remain unexplored, specially in the more complex settings. Therefore, if we employ strategy η1 in such settings with large
delays, we may end up over-exploiting certain arms and as a result obtain insufficient number of rewards pertaining to a seemingly inferior arm,
which may possibly yield higher rewards in some unexplored regions in future. This would adversely affect the performance of the algorithm and
lead to high cumulative regret. Therefore, in scenarios like this, it would be advantageous to use strategy η2.
Note that,η2 canbe thought of as a black-boxprocedure, in the sense that it only updates at the timepointswhere at least one reward is observed

as if there were no delays. From the above discussion, we can conclude that taking the black-box approach might not necessarily be the best in
handling delayed rewards in a contextual bandit problem. In the next section, we demonstrate these ideas using four different simulation setups
and illustrate the performance of strategies η1 and η2 in the four setups respectively. These insights also suggest the need for studying adaptive
strategies for updating these parameters in a local fashion, a promising direction to explore in future.
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5 SIMULATIONS
We conduct a simulation study to compare the per-round average regret for strategies η1 and η2 under different delayed rewards scenarios. The
per-round regret for strategy η is given by,

rn(η) =
1

n

n∑
j=1

(f∗(Xj)− fIj (Xj)).

Note that, if 1
n

∑n
j=1 f∗(Xj) is eventually bounded above and away from 0with probability 1, thenRn(η)→ 1 a.s. is equivalent to rn(η)→ 0 a.s. The

data has been generated from the followingmean reward functions.Weassume d = 2, ` = 2 (or 3) and x ∈ [0, 1]2 and the simulations run until time
N = 8000with first 30 rounds of initialization. For each of the setups, we define one-dimensional functions g1 and g2, and then for x1, x2 ∈ [0, 1],
we define, f1(x1, x2) = g1(x1) ∗ x2 and f2(x1, x2) = g2(x1) ∗ x2.
Setup 1: In this setup, we consider twowell-separated sinusoidal functions, where one is a shifted above version of the other.

g1(x) = (−2 sin(20πx) + 3), g2(x) = (−2 sin(20πx) + 2); x ∈ [0, 1].

Setup 2: Consider three piecewise-linear functions that are well-separated but over different regions in the covariate space. Then, f1(x1, x2) =

x2g1(x1), f2(x1, x2) = x2g2(x1), f3(x1, x2) = x2g3(x1).

g1(x) =


1 0 ≤ x < 0.5

−10x + 6 0.5 ≤ x < 0.6

0 x ≥ 0.6

, g2(x) =


0 0 ≤ x < 0.5

10x− 5 0.5 ≤ x < 0.6

1 x ≥ 0.6

, g3(x) =



0 0 ≤ x < 0.3

20x− 6 0.3 ≤ x < 0.4

2 0.4 ≤ x < 0.6

−20x + 14 0.6 ≤ x < 0.7

0 x ≥ 0.7.

Setup 3: Consider two sinusoidal functions such that the best arm alternates rapidly as the functions oscillate.
g1(x) = 2 cos(5πx) + 2, g2(x) = −2 sin(5πx) + 2, for x ∈ [0, 1].

Setup 4: Consider a setupwhere one armdominates overmajority of the covariate space, except for a small areawhere it incurs a considerably high
regret.

g1(x) = 1, for all x ∈ [0, 1]; g2(x) =



0 0 ≤ x < 0.5, 0.505 ≤ x ≤ 1

100000x− 50000 0.5 ≤ x < 0.502

200 0.502 ≤ x < 0.503

−100000 ∗ x + 50500 0.503 ≤ x < 0.505.

We look at both the setups 1) d = 1, when f1(x) = g1(x) and f2(x) = g2(x) and 2) d = 2, when f1(x1, x2) = g1(x1) ∗ x2 and f2(x1, x2) = g2(x1) ∗ x2,
but only the results for 2) are displayed in Figure 1. The one dimensional functions gi for each of these setups are plotted in Figure 1.

5.1 The simulation process and results
We simulate the data from the abovementioned true mean reward functions as:Yi,j = fi(Xj) + 0.5εj, i ∈ {1, 2, 3}, j ∈ N,where εj

i.i.d.∼ N(0, 1). We
use Nadaraya-Watson estimator with Gaussian kernel to estimate the mean reward functions. We run both strategies η1 and η2 as in Section 3.1.
We consider the following choices of hyper-parameter sequences but in our discussion, we only illustrate a few combinations tomake a comparison
for the sake of brevity.

πn = {n−1/4, log−1 n, log−2 n;n ≥ 1} and hn = {n−1/4, n−1/6, log−1 n;n ≥ 1}.

Both strategies η1 and η2 are run for 60 independent replications (time horizonN = 8000). Then the regret is averaged for each time point over
the replications, to give a more accurate estimate of the total regret accumulated up to a given time horizon. We create delay scenarios governing
when a rewardwill be observed.We consider the following delay scenarios in the increased order of severity of delays,
No delay; Every reward is observed instantaneously.
Delay 1:Geometric delay with probability of success (observing the reward) p = 0.3.
Delay 2: Every 5th reward is not observed by timeN and other rewards are obtainedwith a geometric (p = 0.3) delay.
Delay 3: Each case has probability 0.7 to delay and the delay is half-normal with scale parameter, σ = 1500.
Delay 4: In this case we increase the number of non-observed rewards. Divide the data into four equal consecutive parts (quarters), such that, in
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FIGURE 1 Strategy η1 has lower cumulative average regret in setups 1 and 2 (first two rows) and strategy η2 has lower cumulative average regret in
setups 3 and 4 (rows third and fourth).



11

part 1, we only observe every 10th (with Geom(0.3) delay) observation by time N and not observe the remaining; in part 2, we only observe every
15th observation; in part 3, only observe every 20th observation; in part 4, only observe every 25th observation.
In our simulations, we note that the difference in the cumulative regret is most discernible in the more extreme delay situations, that is, delay

3 and delay 4 in our setup. Therefore, we only illustrate the results on those two delay scenarios. The plots in Figure 1 can be used to compare
performance of strategy η1 and η2. On the y-axis is the average regret plotted against time on the x-axis. The rows in the figure correspond to the
simulation setups and columns 2 and 3 correspond to Delay 3 and Delay 4 respectively. For illustration, we only show the plots corresponding to
one choice of hyper-parameter sequences, {hn} = (log n)−1 and {πn} = (log n)−1, however results from other combinations show similar trends
and are included in the supportingmaterial (section 6).
Note that in setups 1 and 2, η1 performs better than η2 in terms of reducing the overall average regret. Both these setups consist ofmean reward

functions that are well-separated and clear winners in terms of reward gain in substantial portions of the covariate space. Therefore, it is likely that
one can get good estimation even in large delay setting when only small amount of observed data is available for estimation. Thus, in these settings,
controlling for the randomization error is crucial, which is better achieved by using πn instead of πτn , as illustrated in Section 4.3. On the contrary,
in Setup 3 and 4, we notice that strategy η2 performs better than η1 in terms of lower average regret. This can be attributed to the fact that under
large delay settings, one may require more exploration for a longer period of time to get good estimates for the complex mean reward functions.
Therefore, using πτn instead of πn helps improve the mean reward function estimation by exploring for a longer time, leading to a greater chance
of exploring the more localized high regret incurring regions of the covariate space. Another interesting observation is that for setups 1 and 2, the
average regret curves for strategies η1 and η2 are closer with Delay 3 and much separated with Delay 4. Whereas, in setups 3 and 4, an opposite
trend is seen, where the difference in the average regret curves for η1 and η2 is more pronounced with Delay 3 as compared to Delay 4. A possible
reason for this could be that themean reward functions for setups 1 and 2 are easily distinguishable evenwith as few observations as with Delay 4,
thus fast and continuous exploitation helps reduce the regret. However, the mean reward functions in setups 3 and 4 are harder to distinguish and
perhaps with so few observations as in Delay 4, it is hard to do a good job in estimation evenwhile exploringmore using πτn .

6 CONCLUSION
In this work, we present a case on the importance of carefully choosing a contextual bandit strategy based on the expected delay situation. Delays
are assumed tobe independent, but unbounded and could potentially be infinite as long asweexpect to see aminimumnumber of observed rewards
in finite time, and have some knowledge of a lower bound to the expected number of observations.We propose two ε-greedy like strategies, adopt-
ing a nonparametric approach to modeling the mean reward regression functions. In both strategies, the binwidth sequence {hn} is updated only
when new rewards are observed, but the difference lies in updating the exploration probability {πn}. In one strategy, {πn} is only updated when
a new reward is observed (like a black-box procedure), while in the second strategy, {πn} is updated at every time point irrespective of having
observed a reward or not. We establish strong consistency for both the strategies and compare the necessary condition required to achieve con-
sistency with the analogous condition that appeared in ?. Then, using some theoretical illustrations and simulation examples, we show that both
these strategies may be advantageous in different settings depending on the underlying data generating scenarios and the severity of the delays in
observing rewards. Therefore, based on these empirical results, we recommend that the choice of hyper-parameters {hn} and {πn} should depend
on the context of the problem, delay scenario, and some broad knowledge of the data generating process. An immediate future direction based on
these results is to devise an adaptive strategywhich decideswhether to update the hyperparameter sequences or not in amore localizedway. Con-
ducting a finite-time regret analysis to theoretically prove the insights obtainedwould help better understand the problem andwe hope to address
it in future work. It is important to note that optimal arm identifiability and regret minimization may not agree with each other in all problems. It
is possible that two different algorithms achieve about the same cumulative regret, despite of one being poor at identifying the best arms as com-
pared to the other, thus is a different problem altogether and requires a different set of tools to address the problem. In our knowledge, best arm
identification in delayed rewards for contextual bandits has not been studied so far andwould be an interesting future work to consider.

SUPPORTING INFORMATION
The following supporting information is available as part of the online article:
Proof for Theorem 1 for strategy η2 in Section S.1.
Proof for Theorem 3 in Section S.2. Proof of strong consistency result for the proposed strategies when the regression function is estimated using
the Nadaraya-Watson estimator.
Additional simulation plots in Section S.3. Figures S.1, S.2 and S.3 corresponding to choices {hn, πn} =

((log n)−1, (log n)−2), (n−1/4, n−1/4), (n−1/4, (log n)−1).
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