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probability distributions for the delays and using an appropriate randomization to select
the arms, the proposed strategy is shown to be strongly consistent.
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1. Introduction

Multi-armed bandits were first introduced in the landmark paper by Robbins (1952). The development of multi-armed
bandit methodology has been partly motivated by clinical trials with the aim of balancing two competing goals, (1) to
effectively identify the best treatment (exploration) and (2) to treat patients as effectively as possible during the trial
(exploitation).

The classic formulation of the multi-armed bandit problem in the context of clinical practice is as follows: there
are ℓ ≥ 2 treatments (arms) to treat a disease. The doctor (decision maker) has to choose for each patient, one of
the ℓ available treatments, which result in a reward (response) of improvement in the condition of the patient. The
goal is to maximize the cumulated rewards as much as possible. In the classic multi-armed bandit terminology, this is
achieved by devising a policy for sequentially pulling arms out of the ℓ available arms, with the goal of maximizing
the total cumulative reward, or minimizing the regret. Substantial amount of work has been done both on standard
context-free bandit problems (Gittins, 1979; Berry and Fristedt, 1985; Lai and Robbins, 1985; Auer et al., 2002) and on
contextual bandits or multi-armed bandits with covariates (MABC) (Woodroofe, 1979; Sarkar, 1991; Yang and Zhu, 2002;
Langford and Zhang, 2008; Li et al., 2010; Slivkins, 2014). The MABC problems have been studied in both parametric
and nonparametric frameworks. Our work follows nonparametric framework of MABC in Yang and Zhu (2002) where the
randomized strategy is an annealed ϵ-greedy strategy, which is a popular heuristic in bandits literature (Sutton and Barto,
2018, Chapter 2). Some of the other notable work in studying finite time analysis for MABC problems in a nonparametric
framework are Perchet and Rigollet (2013), Qian and Yang (2016a,b). Some insightful overviews and bibliographic remarks
can be found in Bubeck and Cesa-Bianchi (2012), Cesa-Bianchi and Lugosi (2006) and Lattimore and Szepesvári (2018).

In most multi-armed bandit settings it is assumed that the rewards related to each treatment allocation are achieved
before the next patient arrives. This is not realistic since in most cases the treatment effect is seen at some delayed time
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after the treatment is provided. Most often, it would be the case that while waiting for treatment results of one patient,
other patients would have to be treated. In such a situation, all past patient information and feedback is not yet available
to make the best treatment choices for the patients being treated at present.

While an overwhelming amount of work has been done assuming instantaneous observations in both contextual and
non-contextual multi-armed bandit problems, not much work has been done for the case with delayed rewards. The
importance of considering delays was highlighted by Anderson (1964) and Suzuki (1966). They used Bayesian multi-armed
bandits to devise optimal policies. Thompson sampling (Agrawal and Goyal, 2012; Russo et al., 2018) is another commonly
used Bayesian heuristic. Chapelle and Li (2011) conducted an empirical study to illustrate robustness of Thompson
sampling in the case of constant delayed feedback. Most of the work that has been done in the recent years is motivated
by reward delays in online settings like advertisement and news article recommendations. Dudik et al. (2011) considered
a constant known delay which resulted in an additional additive penalty in the regret for the setting with covariates.
Joulani et al. (2013) propose some black box multi-armed bandit algorithms that use the algorithms for the non-delayed
case to handle the delayed case. Their finite time results show an additive increase in the regret for stochastic multi-
armed bandit problems. More recently, Pike-Burke et al. (2018) proposed a variant of delayed bandits with aggregated
anonymous feedback. They show that with their proposed algorithm and with the knowledge of the expected delay, an
additive regret increase like in Joulani et al. (2013) can still be maintained. Some other work related to delayed bandits
can be found in Mandel et al. (2015), Cesa-Bianchi et al. (2016) and Vernade et al. (2017).

In our knowledge, there does not seem to be any work on delayed MABCs using a nonparametric framework. In this
work, we propose an algorithm accounting for delayed rewards with optimal treatment decision making as the motivation.
We use nonparametric estimation to estimate the functional relationship between the rewards and the covariates. We
show that the proposed algorithm is strongly consistent in that the cumulated rewards almost surely converge to the
optimal cumulated rewards.

2. Problem setup

Assume that there are ℓ ≥ 2 arms available for allocation. Each arm allocation results in a reward which is obtained
at some random time after the arm allocation. For each time j ≥ 1, a treatment Ij is allotted based on the data observed
previously and the covariate Xj. We assume that the covariates are d-dimensional continuous random variables and take
values in the hypercube [0, 1]d. Since the rewards can be obtained at some delayed time, we denote {tj ∈ R+, j ≥ 1} to
be the observation time for the rewards for arms {Ij, j ≥ 1} respectively. Let Yi,j be the reward obtained at time tj ≥ j for
arm i = Ij. The mean reward with covariate Xj for the ith arm is denoted as fi(Xj), 1 ≤ i ≤ ℓ. The observed reward with
covariate Xj by pulling the ith arm is modeled as, Yi,j = fi(Xj) + ϵi,j, where ϵi,j denotes random error with E(ϵi,j) = 0 and
Var(ϵi,j) < ∞ for all 1 ≤ i ≤ ℓ and j ∈ N. The functions fi are assumed to be unknown and not of any given parametric
form.

The rewards are observed at delayed times tj; the delay in the reward for arm Ij pulled at the jth time is given by
a random variable dj := tj − j. Assume that these delays are mutually independent, independent of the covariates, and
could be drawn from different distributions. That is, let {dj, j ≥ 1} be a sequence of independent random variables with
probability density functions {gj, j ≥ 1} and the cumulative distribution functions {Gj, j ≥ 1}, respectively.

Let {Xj, j ≥ 1} be a sequence of covariates independently generated according to an unknown underlying probability
distribution PX , from a population supported in [0, 1]d. Let δ be a sequential allocation rule, which for each time j chooses
an arm Ij based on the previous observations and Xj. The total mean reward up to time n is

∑n
j=1 fIj (Xj). To evaluate

the performance of the allocation strategy, let i∗(x) = argmax1≤i≤ℓ fi(x) and f ∗(x) = fi∗(x)(x). Without the knowledge
of the random errors, the ideal performance occurs when the choices of arms selected I1, . . . , In match the optimal arms
i∗(X1), . . . , i∗(Xn), yielding the optimal total reward

∑n
j=1 f

∗(Xj). The ratio of these two quantities is the quantity of interest,

Rn(δ) =

∑n
j=1 fIj (Xj)∑n
j=1 f ∗(Xj)

. (1)

It can be seen that Rn is a random variable no bigger than 1.

Definition 1. An allocation rule δ is said to be strongly consistent if Rn(δ) → 1 with probability 1, as n → ∞.

In Section 3, we propose an allocation rule which takes into account reward delays. Then in Sections 3.1 and 4.1, we
discuss the consistency of the proposed allocation rule under some assumptions and then validate those assumptions
when the histogram method is used to estimate the regression functions respectively.

3. The proposed strategy

Let Zn,i denote the set of observations for arm i whose rewards have been obtained up to time n, that is, Zn,i
:=

{(Xj, Yi,j) : 1 ≤ tj ≤ n and Ij = i}. Let f̂i,n denote the regression estimator of fi based on the data Zn,i. Let {πj, j ≥ 1} be a
sequence of positive numbers in [0, 1] decreasing to zero.
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Step 1. Initialize. Allocate each arm once, w.l.o.g., we can have I1 = 1, I2 = 2, . . . , Iℓ = ℓ. Since the rewards are not
immediately obtained for each of these ℓ arms, we continue these forced allocations until we have at least one reward
observed for each arm. Suppose, that happens at time m0.

Step 2. Estimate the individual functions fi. For n = m0, based on Zn,i, estimate fi by f̂i,n for 1 ≤ i ≤ ℓ using the chosen
regression procedure.

Step 3. Estimate the best arm. For Xn+1, let în+1(Xn+1) = argmax1≤i≤ℓ f̂i,n(Xn+1).
Step 4. Select and pull. Randomly select an arm with probability 1 − (ℓ − 1)πn+1 for i = în+1 and with probability πn+1,

for all other arms, i ̸= în+1. Let In+1 denote this selected arm.
Step 5. Update the estimates.

Step 5a. If a reward is obtained at the (n + 1)th time (could be one or more rewards corresponding to one or
more arms Ij, 1 ≤ j ≤ (n + 1)), update the function estimates of fi for the respective arm (or arms) for which
the reward (or rewards) are obtained at (n + 1)th time.

Step 5b. If no reward is obtained at the (n+ 1)th time, use the previous function estimators, i.e. f̂i,n+1 = f̂i,n ∀ i ∈

{1, . . . , ℓ}.

Step 6. Repeat. Repeat steps 3–5 when the next covariate Xn+2 surfaces and so on.

The choice of πn in the randomization Step 4 is crucial in determining how much exploration and exploitation is done at
any phase of the trial. To emphasize the role of πn, we may use δπ to denote the allocation rule. In order to select the
best arm as time progresses, πn needs to decrease to zero but the rate of decrease will play a key role in determining how
well the allocations work. For example, if in our set-up we have large delays for some arms then it might be beneficial
to decrease πn at a slower rate so that there is enough exploration and the accuracy of our estimates is not affected in
the long run. We use a user-determined choice of πn in this work, that is, the sequence πn does not adapt to the data.

3.1. Consistency of the proposed strategy

Let An := {j : tj ≤ n}, denote the time points for which rewards were obtained by time n. If An is known, then the
total number of observed rewards until time n, denoted by Nn, is also known. Recall that it is possible to observe multiple
rewards at the same time point. Given An, let {sk, k = 1, . . . ,Nn} be the reordered sequence of these observed reward
timings, {tk, k ∈ An}, arranged in a non-decreasing order.

Assumption 1. The regression procedure is strongly consistent in L∞ norm for all individual mean functions fi under the
proposed allocation scheme. That is, ∥f̂i,n − fi∥∞

a.s.
→ 0 as n → ∞ for each 1 ≤ i ≤ ℓ. As described in the allocation strategy

in Section 3, f̂i,n is the estimator based on all previously observed rewards. That is, after initialization, the mean reward
function estimators are only updated at the time points {sk, k = 1, . . .Nn} where Nn is the number of rewards observed
by time n. Therefore, this condition is equivalent to saying ∥f̂i,sn − fi∥∞

a.s.
→ 0 as n → ∞.

Assumption 2. Mean functions satisfy fi(x) ≥ 0, A = sup1≤i≤ℓ supx∈[0,1]d (f ∗(x) − fi(x)) < ∞ and E(f ∗(X1)) > 0.

Theorem 1. Under Assumptions 1 and 2, the allocation rule δπ is strongly consistent as n → ∞.

Proof. Note that consistency holds only when the sequence {πn, n ≥ 1} is chosen such that πn → 0 as n → ∞. The
proof is very similar to the proof in Yang and Zhu (2002). The details can be found in the supplementary material (see
Appendix A.1 in Appendix A). □

Note that Assumption 1, seemingly natural, is a strong assumption and it requires additional work to verify this
assumption for a particular regression setting. We verify this assumption for the histogram method in Section 4.1. On
the other hand, Assumption 2 does not involve the estimation procedure and does not require any verification.

4. The histogram method

In this section, we explain the histogram method for the setting with delayed rewards. Partition [0, 1]d into M = (1/h)d
hyper-cubes with side width h, assuming h is chosen such that 1/h is an integer. For some x ∈ [0, 1]d, let J(x) denote
the set of time points, for which the corresponding design points observed until time n fall in the same cube as x,
say B(x), and for which the corresponding rewards are observed by time n. Let N(x) denote the size of J(x). That is,
let J(x) = {j : Xj ∈ B(x), tj ≤ n} and N(x) =

∑n
j=1 I{Xj ∈ B(x), tj ≤ n}. Furthermore, let J̄i(x) be the subset of

J(x) corresponding to arm i and N̄i(x) is the number of such time points, that is, J̄i(x) = {j ∈ J(x) : Ij = i} and
N̄i(x) =

∑n
j=1 I{Ij = i, Xj ∈ B(x), tj ≤ n}. Then the histogram estimate for fi(x) is defined as,

f̂i,n(x) =
1

N̄i(x)

∑
j∈J̄i(x)

Yj.
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For the estimator to behave well, a proper choice of the bandwidth, h = hn is necessary. Although one could choose
different widths hi,n for estimating different fi’s, for simplicity, the same bandwidth hn is used in the following sections.
For notational convenience, when the analysis is focused on a single arm, i is dropped from the subscript of f̂ , N̄ and J̄ .

Other nonparametric methods like nearest-neighbors, kernel method, spline fitting and wavelets can also be considered
for estimation. Assumption 1 could be verified for these methods using the same broad approach as illustrated in the
following sections for the Histogram method, along with some method specific mathematical tools and assumptions.

4.1. Allocation with histogram estimates

Here, we show that the histogram estimation method along with the allocation scheme described in Section 3, leads
to strong consistency under some reasonable conditions on random errors, design distribution, mean reward functions
and delays. As already discussed in Section 3.1, we only need to verify that Assumption 1 holds for histogram method
estimators. Along with Assumption 2, we make the following assumptions.

Assumption 3. The design distribution PX is dominated by the Lebesgue measure with a density p(x) uniformly bounded
above and away from 0 on [0, 1]d; that is, p(x) satisfies c ≤ p(x) ≤ c̄ for some positive constants c < c̄.

Assumption 4. The errors satisfy a moment condition that there exists positive constants v and c such that, for all m ≥ 2,
the Bernstein condition is satisfied, that is, E|ϵij|m ≤

m!

2 v2cm−2.

Assumption 5. The delays, {dj, j ≥ 1}, are independent of each other, the choice of arms and also of the covariates.

Assumption 6. Let the partial sums of delay distributions satisfy,
∑n

j=1 Gj(n− j) = Ω(nα logβ n)1 for some α > 0, β ∈ R
or for α = 0 and β > 1.

Note that, the choice nα logβ n could be generalized to a sub-linear function q(n) with a growth rate faster than log n.

Definition 2. Let x1, x2 ∈ [0, 1]d. Then w(h; f ) denotes a modulus of continuity defined by, w(h; f ) = sup{|f (x1) − f (x2)| :

|x1k − x2k| ≤ h for all 1 ≤ k ≤ d}.

4.2. Number of observations in a small cube for histogram estimation

From Assumptions 3 and 5, we have that for a fixed cube B with side width hn at time n, P(Xj ∈ B, tj ≤ n) = P(Xj ∈

B)P(tj ≤ n) ≥ chd
nGj(n − j). Let N be the number of observations that fall in B and are observed by time n, that is

N =
∑n

j=1 I{Xj∈B,tj≤n}. It is easily seen that N is a random variable with expectation β ≥
∑n

j=1 ch
d
nGj(n − j). From the

extended Bernstein inequality (see Appendix A.3 in Appendix A), we have

P

(
N ≤

chd
n
∑n

j=1 Gj(n − j)

2

)
≤ exp

(
−

3chd
n
∑n

j=1 Gj(n − j)

28

)
. (2)

Lemma 1. Let ϵ > 0 be given. Suppose that h is small enough such that w(h; f ) < ϵ. Then the histogram estimator f̂n satisfies,

PAn,Xn (∥f̂n − f ∥∞ ≥ ϵ) ≤ M exp
(

−
3πn min1≤b≤M Nb

28

)
+ 2M exp

(
−

min1≤b≤M Nbπ
2
n (ϵ − w(h; f ))2

8(v2 + c(πn/2)(ϵ − w(h; f )))

)
,

where the probability PAn,Xn denotes conditional probability given design points Xn
= (X1, X2, . . . , Xn) and An = {j : tj ≤ n}.

Here, Nb is the number of design points for which the rewards have been observed by time n such that they fall in the bth small
cube of the partition of the unit cube at time n.

Proof. The proof of Lemma 1 is included in the supplementary materials (Appendix A.2 in Appendix A). □

Theorem 2. Suppose Assumptions 2–6 are satisfied. If for some α > 0 and β ∈ R or α = 0 and β > 1, hn and πn are chosen
to satisfy,

nα(log n)β−1hd
nπ

2
n → ∞, (3)

then the allocation rule δπ is strongly consistent.

1 f (n) = Ω(g(n)) if for some positive constant c , f (n) ≥ cg(n) when n is large enough.
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Proof of Theorem 2. The histogram technique partitions the unit cube into M = (1/h)d small cubes. For each small
cube Bb, 1 ≤ b ≤ M , in the partition of the unit cube, let Nb denote the number of time points, for which the
corresponding design points fall in the cube Bb and corresponding arm rewards are observed by time n. In other words,
Nb =

∑n
j=1 I{Xj∈Bb,tj≤n}. Using inequality (2) we have,

P

(
Nb ≤

chd
n
∑n

j=1 Gj(n − j)

2

)
≤ exp

(
−

3chd
n
∑n

j=1 Gj(n − j)

28

)

⇒ P

(
min

1≤b≤M
Nb ≤

chd
n
∑n

j=1 Gj(n − j)

2

)
≤ M exp

(
−

3chd
n
∑n

j=1 Gj(n − j)

28

)
. (4)

Let W1, . . . ,Wn be Bernoulli random variables indicating whether the ith arm is selected (Wj = 1) for time point j, or not
(Wj = 0). Note that, conditional on the previous observations and Xj, the probability of Wj = 1 is almost surely bounded
below by πj ≥ πn for 1 ≤ j ≤ n. Let w(hn; fi) be the modulus of continuity as in Definition 2. Note that, under the continuity
assumption of fi, we have w(hn; fi) → 0 as hn → 0. Thus, for any ϵ > 0, when hn is small enough, ϵ − w(hn; fi) ≥ ϵ/2.
Consider,

P(∥f̂i,n − fi∥∞ > ϵ) = P

(
∥f̂i,n − fi∥∞ > ϵ, min

1≤b≤M
Nb ≥

chd
n
∑n

j=1 Gj(n − j)

2

)

+ P

(
∥f̂i,n − fi∥∞ > ϵ, min

1≤b≤M
Nb <

chd
n
∑n

j=1 Gj(n − j)

2

)

≤ EPAn,Xn

(
∥f̂i,n − fi∥∞ > ϵ, min

1≤b≤M
Nb ≥

chd
n
∑n

j=1 Gj(n − j)

2

)

+ P

(
min

1≤b≤M
Nb <

chd
n
∑n

j=1 Gj(n − j)

2

)
,

where PAn,Xn denotes conditional probability given the design points until time n, Xn
= {X1, X2, . . . , Xn} and the event,

An := {j : tj ≤ n}.
From Lemma 1, we have that given the design points and the time points for which rewards were observed, for any

ϵ > 0, when h is small enough,

PAn,Xn (∥f̂n − f ∥∞ ≥ ϵ) ≤ M exp
(

−
3πn min1≤b≤M Nb

28

)
+ 2M exp

(
−

min1≤b≤M Nbπ
2
n (ϵ − w(hn; f ))2

8(v2 + c(πn/2)(ϵ − w(hn; f )))

)
.

Using the above inequality and (4), we have,

P(∥f̂i,n − fi∥∞ > ϵ) ≤ 2M exp

(
−

chd
n(
∑n

j=1 Gj(n − j))π2
n (ϵ − w(hn; fi))2

16(v2 + cπn/2(ϵ − w(hn; fi)))

)

+ M exp

(
−

3chd
nπn

∑n
j=1 Gj(n − j)

56

)
+ exp

(
−

3chd
n
∑n

j=1 Gj(n − j)

28

)
.

It can be shown that the above upper bound is summable in n under the condition,

hd
nπ

2
n
∑n

j=1 Gj(n − j)

log n
→ ∞. (5)

It is easy to see that this follows from Assumption 6 and (3).
Since ϵ is arbitrary, by the Borel–Cantelli lemma, we have that ∥f̂i,n − fi∥∞ → 0. This is true for all arms 1 ≤ i ≤ ℓ.

Hence, this completes the proof of Theorem 2. □

4.3. Effects of reward delay distributions

As one would expect, the amount of delay in observing the rewards will have a considerable effect on the speed of
sequential learning. In terms of treatment allocation, if there are substantial delays in observing patient responses for a
particular treatment, the learning for that treatment will slow down and as a result the efficiency of the allocation strategy
will decrease. Therefore, Assumption 6 imposes some restrictions on the delay distributions to ensure that at least a small
proportion of rewards will be obtained in finite time. It is of interest to see how the delay distribution affects the rate at
which πn and hn are allowed to decrease. This relationship can be understood by examining condition (3) for Theorem 2.
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Note that Assumption 6 and (3) in Theorem 2 can be generalized to include any function q(x) with at least a growth
rate faster than logarithmic growth rate. We assume

∑n
j=1 Gj(n− j) = Ω (q(n)) where q(n) satisfies, q(n)/log(n) → ∞ as

n → ∞. Then it is easy to see that hn and πn can be chosen such that,

hd
nπ

2
n q(n)

log(n)
→ ∞ as n → ∞.

which implies condition (5) holds. A possible advantage of this is that we allow a wide range of possible delay distributions
with mild restrictions on the delays. Below, we consider some cases of the delay distributions and see how they effect
exploration (πn) and bandwidth (hn) of the histogram estimator as time progresses.

1. In condition (3), q(n) = nα logβ n for α > 0 and β ∈ R or α = 0 and β > 1. Let us first consider the case
when α = 0 and β > 1, we have q(n) = logβ n for β > 1 and we want

∑n
j=1 Gj(n − j) = Ω(logβ n). Consider,

πn = (log n)−(β−1)/(2+d) for n > m0 and β > 1, then for (5) to hold we need the bandwidth hn also to be of order
Ω((log n)−(β−1)/(2+d)). For example, hn = (log n)−(β−1)/β(2+d) would guarantee consistency. Notice that with these
πn and hn, one would spend a lot of time in exploration and the bandwidth would also decay very slowly which
would effect the accuracy of the reward function estimates until n is sufficiently large.
Notice that the restriction of partial sum of probability distributions for the delays, being at least of the order
logβ n gives the possibility of modeling cases with extremely large delays. For example, in clinical studies when the
outcome of interest is survival time and we want to administer treatments for a disease such that the survival time
is maximized. With the unprecedented advances in drug development, the life expectancy of patients is more likely
to increase, hence the survival time for a patient given any treatment would be large. Therefore, the assumption
that partial sums of probability distributions for the delays until time n need only be at least logβ n seems to be
quite reasonable when the expected waiting times (in this case survival times) are long. For example, diseases
like diabetes and hypertension which have a long survival time, since they cannot be cured, but can be controlled
with medications. These diseases also have fairly high prevalence, so a large sample size to be able to get close
to optimality would not be a problem. For such diseases, assuming that one would only observe the responses
(survival times) of a small fraction of patients in finite time seems reasonable.

2. For the case when α > 0 and β ∈ R, we have that
∑n

j=1 Gj(n − j) = Ω(nα logβ n). Consider, πn = n−α/(2+d) for
n > m0, then for the condition (5) to hold we need hn to also be of order Ω(n−α/(2+d)). For example, hn = n−α/2(2+d)

results in hd
nπ

2
n n

α logβ−1 (n) = nαd/2(2+d) logβ−1 (n) → ∞ as n → ∞, irrespective of the value of β . Here the
lower bound on the partial sums of probability distributions for the delays can grow faster than the previous case,
depending on the values of α and β .
This restriction of order nα(logβ n) can model cases with moderately large delays. From a clinical point of view, one
could model diseases in which treatments show their effect in a short to moderate duration of time, for examples
diseases like diarrhea, common cold, headache, and nutritional deficiencies. Here the response of interest would
be improvement in the condition of a patient as a result of a treatment. For such diseases, one can expect to see
the treatment effects on patients in a short period of time. Hence, the delay in observing treatment results will not
be too long. If the response considered was survival (survived or not), then stroke could also fall in this category
because of high mortality.
Note that, Assumption 6 only restricts on the proportion of rewards expected to be observed in the long run.
Therefore, it is possible for strong consistency to be achieved even when there is infinite delay in observing the
rewards of some arms (non-observance of some rewards).

5. Simulation study

We conduct a simulation study to compare the effect of different delay scenarios on the per-round average regret of
our proposed strategy. The per-round regret is given by, rn(δ) =

1
n

∑n
j=1(f

∗(Xj) − fIj (Xj)).
Note that if 1

n

∑n
j=1 f

∗(Xj) is eventually bounded above and away from 0 with probability 1, then Rn(δ) → 1 a.s. is
equivalent to rn(δ) → 0 a.s.

5.1. Simulation setup

Consider number of arms, ℓ = 3, and the covariate space to be two-dimensional, d = 2. Let Xn = (Xn1, Xn2) where
Xni

i.i.d.
∼ Unif(0, 1). We assume that the errors ϵn ∼ 0.5N(0,1). The first 30 rounds were used for initialization. The following

true mean reward functions are used,

f1(x) = 0.7(x1 + x2), f2(x) = 0.5x0.751 + sin(x2), f3(x) =
2x1

0.5 + (1.5 + x2)1.5
.

We consider the following delay scenarios and run simulations until N = 10 000. (1) No delay; (2) Delay 1: Geometric
delay with probability of success (observing the reward) p = 0.3; (3) Delay 2: Every 5th reward is not observed by time N
and other rewards are obtained with a geometric (p = 0.3) delay; (4) Delay 3: Each case has probability 0.7 to delay and
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Fig. 1. Per-round regret for the proposed strategy for different delay scenarios. The grid of plots represent 4 different combination of choices for
{πn} and {hn}. For a given row, πn remains fixed and hn varies and vice versa for columns.

the delay is half-normal with scale parameter, σ = 1500; (5) Delay 4: In this case we increase the number of non-observed
rewards. Divide the data into four equal consecutive parts (quarters), such that, in part 1, we only observe every 10th
(with Geom(0.3) delay) observation by time N and not observe the remaining; in part 2, we only observe every 15th
observation; in part 3, only observe every 20th observation; in part 4, only observe every 25th observation.

In Fig. 1, we plot the per-round regret vs time by delay type for four combinations of πn and hn. As one would expect
(see Fig. 1), the severity of delay has a clear effect on the regret, and for delay scenarios where a large number of rewards
are not observed in finite time, the regret is comparatively higher. Note that most delay scenarios for which a substantial
number of rewards can be obtained in finite time, tend to converge in quite similar patterns.

Choice of {πn} and {hn}: According to Theorem 2, if πn and hn are chosen such that condition (3) is met, consistency
of the allocation rule follows. Therefore, for the case with d = 2, which is the case of the simulation setting, we have to
choose sequences slower than (πn = n−1/2, hn = n−1/2), even in the case of no delays. Keeping this in mind, we chose two
different choices of sequences for πn (n−1/4, n−1/6) and two choices of hn((log n)−1, n−1/6). Note that, in Fig. 1, for a given
row, πn remains fixed while hn varies and vice versa for columns. It can be seen that the regret gets worse when hn decays
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too fast (in our range of n as N = 10 000), specially for the scenario (Delay 4) with increasing number of non-observed
rewards, possibly because of violation of condition (3). Also notice that, slow decaying πn has higher regret (last row).
This could be because of large randomization error that leads to high exploration price. In general, there are a large pool
of choices for hn and πn that satisfy equation (3) as can be seen from Fig. 1. However, a thorough understanding of the
finite-time regret rates and further research would be needed to evaluate optimal choices of {πn} and {hn} for a given
scenario.

6. Conclusion

In this work we develop an allocation rule for multi-armed bandit problem with covariates when there is delay
in observing rewards. We show that strong consistency can be established for the proposed allocation rule using the
histogram method for estimation, under reasonable restrictions on the delay distributions and also illustrate that using
a simulation study. Our approach on modeling reward delays is different from the previous work done in this field
because, (1) we use nonparametric estimation technique to estimate the functional relationship between the rewards
and covariates and (2) we allow for delays to be unbounded with some assumptions on the delay distributions. The
assumptions impose mild restrictions on the delays in the sense that they allow for the possibility of non-observance of
some rewards as long as a certain proportion of rewards are obtained in finite time. With this general setup, it is possible
to model many different situations including the one with no delays. The conditions on the delay distributions easily allow
for large delays as long as they grow at a certain minimal rate. This obviously will result in slower rate of convergence
because of longer time spent in exploration. Ideally, we would like our allocation scheme to devise the optimal treatments
sooner, for which we would need to impose stricter conditions on the delay distributions. Therefore, working on finite-
time analysis for the setting with delayed rewards seems to be an immediate future direction. In addition, we assume
some knowledge on the delay distributions, so for situations where there is little understanding of the delays, a different
approach might be needed, such as a methodology which adaptively updates the delay distributions.
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