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Abstract: Modern-day problems in statistics often face the challenge of
exploring and analyzing complex non-Euclidean object data that do not
conform to vector space structures or operations. Examples of such data
objects include covariance matrices, graph Laplacians of networks, and uni-
variate probability distribution functions. In the current contribution a new
concurrent regression model is proposed to characterize the time-varying
relation between an object in a general metric space (as a response) and a
vector in R

p (as a predictor), where concepts from Fréchet regression is em-
ployed. Concurrent regression has been a well-developed area of research for
Euclidean predictors and responses, with many important applications for
longitudinal studies and functional data. However, there is no such model
available so far for general object data as responses. We develop generalized
versions of both global least squares regression and locally weighted least
squares smoothing in the context of concurrent regression for responses
which are situated in general metric spaces and propose estimators that
can accommodate sparse and/or irregular designs. Consistency results are
demonstrated for sample estimates of appropriate population targets along
with the corresponding rates of convergence. The proposed models are il-
lustrated with human mortality data and resting state functional Magnetic
Resonance Imaging data (fMRI) as responses.
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1. Introduction

Concurrent regression models are an important tool to explore the time-dynamic
nature of the dependence between two variables. They are often used in regres-
sion problems, where the effect of the covariates on the response variable is
affected by a third variable, such as time or age. Specifically, the response at
a particular time point is modeled as a function of the value of the covariate
only at that specific time point. Concurrent regression models, also known as
varying coefficient models, are natural extensions of (generalized) linear models
[27, 12]. Owing to their interpretability and wide applicability in areas such
as economics, finance, politics, epidemiology and the life sciences, there exists
a rich literature on these models that covers a large range from simple linear
models with scalar responses to more complex longitudinal and functional data
[52, 24, 47, 51, 29, 60], including regression problems where both responses and
covariate(s) are of functional type.

However, as we enter the era of big data, more complex, often non-Euclidean,
data are increasingly observed and this motivates the development of statistical
models that are suitable for such complex data. In this paper, we introduce
Concurrent Object Regression (CORE) models for very general settings where
one is interested in the time-varying regression relation between a response that
takes values in a general metric object space without any linear structure and
real-valued covariate(s). We note that no such models exist at this time and this
is the first concurrent model for object data.

For the special case where the observations consist of a paired sample of
square integrable random functions (X(t), Y (t)) that take values in R, the linear
functional concurrent model is well known [48] and can be written as

E (Y (t)|X(t)) = μY (t) + β(t) (X(t)− μX(t)) , (1.1)
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where μY (·) and μX(·) are respectively the mean functions of X(·) and Y (·)
and β(·) is the smooth coefficient function. This can be thought of as a series of
linear regressions for each time point that are connected and restricted by the
assumed smoothness of the coefficient function β.

Several methods have been proposed to estimate the model components
μX , μY and β, which are functional in nature, including local polynomial kernel
smoothing regression [22, 23, 28, 64], smoothing splines [20, 11] and function
approximation of β(·) through basis expansion [30]. These methods were also
adapted for spatial imaging [68], ridge regression [35] and other areas. Since the
linear approach may not capture the true and possibly complex nature of the
relationship between Y and X, the response and the covariate, a more general
nonparametric model may be preferable,

E (Y (t)|X(t)) = m(t,X(t)), (1.2)

where the regression function m is assumed to satisfy some basic smoothness
properties.

Unlike a linear regression model, the parametric varying coefficient model
in (1.1) or the nonparametric concurrent model in (1.2) involve the nested
structure of the predictor space (T,X(T )) and allow the regression function
(the coefficient functions in the parametric model) to vary systematically and
smoothly in more than one direction. We aim to capture the nested predictor
space structure and develop a concurrent regression model when the responses
are random objects lying in a general metric space. To the best of our knowl-
edge, such a model has not been studied before, even though for its Euclidean
analogue various methods have been discussed over the years.

Estimation and inference in the nonparametric functional concurrent regres-
sion literature include methodologies such as spline smoothing [34], Gaussian
process regression [54, 62], and local kernel smoothing techniques [59] among
others, with various subsequent developments [61, 74]. Regression methods have
also been considered more recently for manifold-valued responses in curved
spaces [73, 13, 67, 15], owing to the growing realization that data from many
disciplines have manifold structures, including data generated in brain imaging,
medical and molecular imaging, computational biology and computer vision.

The major objective of this paper is to overcome the limitation of Euclidean
responses in the previous concurrent regression approaches, where it is always
assumed that Y (t) ∈ R or Y (t) ∈ R

p. The challenge that one faces in extending
concurrent regression beyond Euclidean responses is that existing methodol-
ogy relies in a fundamental way on the vector space structure of the responses,
which is no longer available, not even locally, when responses are situated in gen-
eral separable metric spaces that cover large classes of possible response types.
Technological advances have made it possible to record and efficiently store time
courses of image, network, sensor or other complex data. Such “object-oriented
data” [36] or “random objects” [38] can be viewed as random variables taking
values in a separable metric space that is devoid of a vector space structure and
where only pairwise distances between the observed data are available. Such
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random object data, including distributional data in Wasserstein space [39, 10],
covariance matrix objects [43], data on the surface of the sphere [16], and phy-
logenetic trees [7], have drawn the attention of the statisticians in recent times.

As a motivating example for the proposed concurrent object regression
(CORE), we consider fMRI brain-image scans for Alzheimer’s patients over

varying ages. It is important to note that, the space C of the functional connec-
tivity network of fMRI signals, represented as correlation matrices between the
different nodes of the brain is not linear and there is no concept of direction.

However, the connectivity correlation matrices can be perceived as random
objects in a metric space, endowed with a suitable metric. For example, one
might be interested to see if certain measures indexing the advancement of the
disease, such as the total cognitive score, are associated with the connectivity
matrices. It is known that a higher total cognitive score may be linked with a
more serious cognitive deficit and a higher age. At the same time, the functional
connectivity itself is expected to deteriorate with increasing age as the severity
of the condition intensifies over time. Of interest is then to ascertain the de-
pendence of the functional connectivity correlation matrices of the Alzheimer’s
subjects on time (age) and some index of the overall health for the subjects,
that also varies over time.

The space of positive semi-definite matrices is a Riemannian manifold which
can be flattened locally and analyzed using linear results, however the Rieman-
nian structure of the space depends heavily on the metric. Our approach of
treating it as a metric space is more general, in the sense that it works for many
metrics in the space such as the Frobenius metric, the log-Euclidean metric [3],
the Procrustes metric [45, 72], the power metric [18, 19], the affine-invariant
Riemannian metric [42, 37], the Cholesky metric [33] among others. As such we
do not have to evoke the Riemannian geometry of the space. However, a possible
challenge inherent in Fréchet regression to ascertain the existence and unique-
ness of the Fréchet means may be encountered. Other examples of such general
metric space objects include time-varying age-at-death densities resulting from
demographic data, where the interest is in quantifying the dynamic regression
relationship between the densities and time-dependent some economic index
such as GDP per capita, or time-varying network data, for example internet
traffic networks where one has concurrent covariates.

The natural notion of a mean for random elements of a metric space is the
Fréchet mean [26]. It is a direct generalization of the standard mean, and is
defined as the element of the metric space for which the expected squared dis-
tance to all other elements is minimized. It can encompass different types of
means commonly used, such as the expectation, the median, or the geometric
mean, and extends to non-Euclidean spaces, thus allowing for profound applica-
tions of probability theory and statistics exploiting the geometry in such spaces
[50, 57, 65, 69]. [44] extended the concept of Fréchet mean to the notion of a
conditional Fréchet mean, implemented as Fréchet regression, where one has
samples of data (Xi, Yi), with the Yi being random objects and the Xi are Eu-
clidean predictors. This is an extension of ordinary regression to metric space
valued responses.
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Even though Fréchet regression [44] can incorporate a random time variable
as one of the Euclidean covariates, the concurrent regression relationship be-
tween paired stochastic processes of real covariates and an object response as a
function of time has not been explored yet. This is an important problem of its
own accord and highly relevant in various data applications such as brain imag-
ing for which we provide an example in Section 6.1. It is of interest to observe
that concurrent object regression is not the same as Fréchet regression, just as
varying coefficient models in (1.1) and (1.2) are different from linear regression
models when the response is Euclidean.

In Section 3, we introduce the concurrent object regression (CORE) model
for time-varying object responses and time-varying real covariate(s). We sepa-
rately discuss two situations – one where we assume a “linear” dependence of
the predictor and response at any given time point and a second scenario in
which we assume a nonparametric model in Sections 3 and 4 respectively. Our
motivating application examples deal with samples of probability distributions,
data lying on unit sphere in R

3, and correlation matrices, which are illustrated
with simulations and real data from neuroimaging and demography, with details
in Sections 5 and 6, respectively. We conclude with a brief discussion about our
methods in Section 7.

2. Data and model

Throughout, we consider a totally bounded, hence separable, metric space (Ω, d),
where the response is situated. This is coupled with a p-dimensional real valued
stochastic process X(·) as a predictor. The Ω-valued random object response
Y depends on both X and a “time”-variable t ∈ T , where T is a closed and
bounded interval on the real line. In other words, (X(t), Y (t)) : t ∈ T are two
stochastic processes that, for each given t, take values Rp and Ω respectively.

A random time T is selected from some distribution fT on T , at which X
is observed. Note that X(T ) is itself a random variable and has a probability
distribution on R

p. The joint distribution of (X(T ), T ) is well defined in case
X(T ) and T are independently distributed. For the sake of generality, we con-
sider the joint distribution of (X(T ), T ) and, with a slight abuse of notation,
denote the joint distribution by F(X,T ), which is a probability distribution on
R

p × R. We further assume that Y ∼ FY where FY is a distribution on (Ω, d).
The conditional distributions of Y (T )|(X(T ), T ) and (X(T ), T )|Y (T ) are de-
noted by FY |(X,T ) and F(X,T )|Y respectively, assuming they exist. We define the
concurrent object regression (CORE) model as follows

m⊕(x, t) := E⊕ (Y (t)|X(T ) = x, T = t) := argmin
ω∈Ω

M⊕(ω, x, t),

M⊕(ω, x, t) = E
(
d2(Y (t), ω)|X(T ) = x, T = t

)
, (2.1)

and refer to the objective function M⊕(·, x, t) in (2.1) as the conditional Fréchet
function.

In many scenarios one does not fully observe the trajectories of responses
Y (t) and covariates X(t). We consider a general situation, where each subject is
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measured at random time points, possibly according to a sparse design, with ob-
served data of the form (Til, Xi(Til), Yi(Til)); l = 1, . . . , ni; i = 1, . . . , n, i.e., for
the ith subject one has observations of the response Y (·) and predictor X(·) at
time points Til that may vary from subject to subject. We denote the observed
data by (Til, Xil, Yil); l = 1, . . . , ni; i = 1, . . . , n. The number of observations

ni made for the ith subject is a r.v. with ni
i.i.d.∼ N , where N > 0 is a positive

discrete random variable, with E (N) < ∞ and P (N > 1) > 0. The observa-
tion times and measurements are assumed to be independent of the number
of measurements, i.e., for any subset Ji ⊆ {1, . . . , ni} and for all i = 1, . . . , n,
({Til : l ∈ Ji}, {Xil : l ∈ Ji}, {Yil : l ∈ Ji}) is independent of ni.

3. Nonparametric concurrent object regression

In this section, we develop a nonparametric estimation strategy for the target
CORE model (2.1), assuming that the dependence of the response Y (T ) on
the predictors X(T ) and T , for any randomly chosen T ∈ T are local, in both
directions. For ease of presentation, we provide details for the case of a scalar
predictor. For the remainder of this section we will assume that X(t) ∈ R

p,
where p = 1 for all t ∈ T , that is the dimension of the predictor space (T,X(T )),
for any random time point T is p+ 1 = 2. This allows for simpler notation and
implementation. At the cost of much more involved notation, the theory can be
extended to cover cases where p > 1.

We aim to express the CORE function m⊕(x, t) in (2.1) as a weighted Fréchet
mean, where the weight function varies with the values (x, t) of the predictors.
The intuition behind these approaches derives from the special case of Euclidean
responses.

As an illustrating motivation, let us first consider here the special case of time-
varying Euclidean responses. The space is equipped with the metric d(a, b) =
dE(a, b) = |a− b| for all a, b ∈ R. The minimizer of M⊕ in (2.1) exists, is unique
and coincides with the conditional expectation, and we write

m⊕(x, t) = E⊕ (Y (t)|X(T ) = x, T = t) = E (Y (t)|X(T ) = x, T = t) := m(x, t).
(3.1)

Local kernel-based nonparametric regression approaches to estimate a smooth
regression function for Euclidean responses have been well investigated due to
their versatility and flexibility. If we assume a nonparametric relationship of the
response Y with the predictors T and X(T ), the local linear estimate of the

function m in (3.1) at any given point (x, t) is given by m̂(x, t) := β̂0. Here

(β̂0, β̂1, β̂2) = argmin
β0,β1,β2

1

n

n∑
i=1

( 1

ni

ni∑
j=1

(Yil − β0 − β1(Xil − x)− β2(Til − t))
2
)

×Kh1,h2(Xil − x, Til − t). (3.2)

K is a bivariate kernel function, which corresponds to a bivariate density func-
tion, and h1, h2 are the bandwidth parameters such that Kh1,h2(x1, x2) =
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(h1h2)
−1K(x1/h1, x2/h2). We can view the above estimator in (3.2) as an M-

estimator of the alternative population target

(β∗
0 , β

∗
1 , β

∗
2) = argmin

β0,β1,β2

∫ [
Kh1,h2(z − x, s− t)

×
(∫

ydFY |X,T (y, z, s)− β0 − β1(z − x)− β2(s− t)
)2]

dF(X,T )(z, s).

(3.3)

Defining

μjk := E
(
Kh1,h2(X − x, T − t)(X − x)j(T − t)k

)
, (3.4)

rjk := E
(
Kh1,h2(X − x, T − t)(X − x)j(T − t)kY

)
, Σ =

⎡
⎣μ00 μ10 μ01

μ10 μ20 μ11

μ01 μ11 μ02

⎤
⎦ ,

the solution of the minimization problem in (3.3) is

l̃(x, t) = β∗
0 =

[
1, 0, 0

]
Σ−1

[
r00, r10, r01

]
= E

(
sL(X,x, T, t, h1, h2)Y

)
,

(3.5)

with weight function sL given by

sL(X,x, T, t, h1, h2) = Kh1,h2(X − x, T − t) [ν1 + ν2(X − x) + ν3(T − t)] ,
(3.6)

[ν1, ν2, ν3] =
1

σ2
0

[
μ20μ02 − μ2

11, μ01μ11 − μ02μ10, μ10μ11 − μ20μ01

]
,

σ2
0 = |Σ| =

(
μ00μ20μ02 − μ00μ

2
11 − μ2

10μ02 − μ2
01μ20 + 2μ01μ10μ11

)
,

where |A| denotes the determinant of any square matrix A. Observing that∫
sL(z, x, s, t, h1, h2)dFY,X,T (y, z, s) = 1, it follows that l̃(x, t) in (3.5) corre-

sponds to a localized Fréchet mean w.r.t. the Euclidean metric dE(a, b) := |a−b|,

l̃(x, t) = argmin
y∈R

E
(
sL(X,x, T, t, h1, h2)d

2
E(Y, y)

)
. (3.7)

The minimizer l̃(x, t) can be viewed as a smoothed version of the true regression
function, and can therefore be treated as an intermediate target.

This locally weighted Fréchet mean in (3.7) can be readily generalized to the
case of an Ω-valued stochastic process Y (t) : t ∈ T , where Ω denotes a separable
metric space, by retaining the same weights and replacing the Euclidean metric
dE by d. This leads to the intermediate population-level quantity, as is given
below by model (3.8).
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In the context of nonparametric CORE, we thus define an intermediate func-
tion l̃⊕(x, t) as a localized weighted Fréchet mean at the chosen points (x, t),
where

l̃⊕(x, t) := argmin
ω∈Ω

L̃⊕(ω, x, t), where

L̃⊕(ω, x, t) := E
(
sL(X,x, T, t, h1, h2)d

2(Y, ω)
)
. (3.8)

Here sL is as in (3.6) and captures the local dependence of the response on
the predictor. Minimizing the intermediate objective L̃⊕(ω, ·, ·) in (3.8) turns
out to be approximately the same as minimizing the final objective M⊕(ω) in
(2.1). Finally, we propose an estimator for the intermediate target based on the
plug-in estimates of the auxiliary parameters (see (3.4)) by their corresponding
empirical estimates as follows. Define

μ̂jk :=
1

n

n∑
i=1

1

ni

ni∑
l=1

Kh1,h2(Xil − x, Til − t)(Xil − x)j(Til − t)k, (3.9)

Σ̂ =

⎡
⎣μ̂00 μ̂10 μ̂01

μ̂10 μ̂20 μ̂11

μ̂01 μ̂11 μ̂02

⎤
⎦ , σ̂2

0 = |Σ̂|, N =

n∑
i=1

ni, (3.10)

[ν̂1, ν̂2, ν̂3] =
1

σ̂2
0

[
μ̂20μ̂02 − μ̂2

11, μ̂01μ̂11 − μ̂02μ̂10, μ̂10μ̂11 − μ̂20μ̂01

]
,

(3.11)

ŝLil(x, t, h1, h2) = Kh1,h2(Xil − x, Til − t) [ν̂1 + ν̂2(Xil − x) + ν̂3(Til − t)] .
(3.12)

Plugging in the above empirical estimates we obtain the local Fréchet regres-
sion estimate

l̂⊕(x, t) := argmin
ω∈Ω

L̂⊕(ω, x, t), where

L̂⊕(ω, x, t) :=
1

n

n∑
i=1

1

ni

ni∑
l=1

ŝLil(x, t, h1, h2)d
2(Yil, ω). (3.13)

Under suitable assumptions the bias introduced by changing the true target
in (2.1) to the intermediate target in (3.8), given by d(m⊕(·, ·), l̃⊕(·, ·)), con-
verges to 0 as the bandwidths h1, h2 → 0. In addition the stochastic term
d(l̂⊕(·, ·), l̃⊕(·, ·)), converges to 0 in probability, which then yields the conver-
gence of the proposed plug-in estimator in (3.13) to the true target model in
(2.1). To establish this, we require the following assumptions, which are similar
to assumptions in [44].

(A1) The kernelK is symmetric around zero, with |Kγ
jk| = |

∫
Kγ(u, v)ukvjdudv|

< ∞ for all j, k = 0, 1, . . . , 6 and γ = 0, 1, 2. Also there is a common band-
width parameter h > 0, h → 0, nh → ∞ as n → ∞, such that h1, h2 ∼ h.



CORE 4039

(A2) The marginal density f(X,T )(x, t) and the conditional density
f(X,T )|Y (x, t, y) exist and are twice continuously differentiable with uni-
formly bounded derivatives as a bivariate function of (x, t), the latter for
all y, for any given realization of T = t, X(T ) = x, and Y (T ) = y.

(A3) The Fréchet means m⊕(x, t), l̃⊕(x, t), l̂⊕(x, t) exist and are unique for any
given points (x, t), and for any ε > 0,

inf
d(ω,m⊕(x,t))>ε

M⊕(ω, x, t) > M⊕(m⊕(x, t), x, t).

(A4) For any ε > 0,

lim inf
n

inf
d(ω,m⊕(x,t))>ε

(M⊕(ω, x, t)−M⊕(m⊕(x, t), x, t)) > 0,

inf
d(ω,l̃⊕(x,t))>ε

(
L̃⊕(ω, x, t)− L̃⊕(l̃⊕(x, t), x, t)

)
> 0.

(A5) There exist constants η1 > 0, C1 > 0, with d(ω,m⊕(x, t)) < η1 such that

M⊕(ω, x, t)−M⊕(m⊕(x, t), x, t) ≥ C1d(ω,m⊕(x, t))
2.

(A6) There exist η2 > 0, C2 > 0, with d(ω, l̃⊕(x, t)) < η2 such that

lim inf
n

[
L̃⊕(ω, x, t)− L̃⊕(l̃⊕(x, t), x, t)

]
≥ C1d(ω, l̃⊕(x, t))

2.

(A7) Denoting the ball of radius δ centered at m⊕(x, t) by Bδ(m⊕(x, t)) ⊂ Ω
and its covering number using balls of size ε as N(ε,Bδ(m⊕(x, t)), d),∫ 1

0

√
1 + logN(δε,Bδ(m⊕(x, t)), d)dε = O(1) asδ → 0.

Assumptions (A1)-(A2) are necessary to show that the intermediate objective
function L̃⊕ is a smoothed version of the true objective function M⊕. These are
assumptions akin to the ones made in [44] and are common in the nonparametric
regression literature. Assumption (A3) is regarding the existence and uniqueness
of the Fréchet means. The existence of the Fréchet means depends on the nature
of the space, as well as the metric considered. For example, in case of Euclidean
responses the Fréchet means coincide with the usual means for random vectors
with finite second moments. In case of Riemannian manifolds the existence,
uniqueness, and the convexity of the center of mass is guaranteed [1, 41]. In a
space with a negative or zero curvature, or in a Hadamard space unique Fréchet
means are also shown to exist [4, 5, 40, 55, 31].

Corresponding to each space equipped with a suitable metric, the computa-
tional challenge to find the Fréchet means could be different. In many cases,
the key idea to compute the weighted Fréchet means reduces to solving a con-
strained quasi-quadratic optimization problem and projecting back into the solu-
tion space. For a wide class of objects such as distributions, positive semi-definite
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matrices, networks, and Riemannian manifolds among others, the unique solu-
tion can be found analytically (see Propositions 1 and 2 in the Supplementary
Material of [44]), and is not computationally difficult to obtain.

Assumptions (A3)–(A4) are commonly invoked to establish consistency of
an M-estimator such as m̂⊕(x, t), where one uses the weak convergence of the
empirical process L̂⊕ to L̃⊕, which in turn converges smoothly to M⊕. Assump-
tions (A5)–(A6) relate to the curvature of the objective function and are needed
to control the behavior of L̃⊕ − M⊕ and L̂⊕ − L̃⊕ respectively, near the min-
imum. Assumption (A7) gives a bound on the covering number of the object
metric space and is satisfied by the common examples of random objects such
as distributions, covariance matrices, networks and so on.

In the concurrent regression framework, an important feature of the predictor
space is as follows: when X(t) ∈ R, for any given t ∈ T , the set {(t,X(t)) :
t ∈ T } is a one-dimensional manifold M embedded in the ambient space R

2.
This is an inherent property of the whole predictor space, irrespective of the
dimension (possibly p > 1) or the structure of X(t). In our case, this reduces
the effective dimension of the predictor space from two to one, i.e., the observed
data (Til, Xil) take values on this 1-dimensional manifold embedded in R

2. Note
that this does not contradict our assumptions regarding the existence of the joint
densities, fX,T (Section 2).

Denoting by B(k)
r (a) ⊂ R

k a ball in R
k with center a ∈ R

k and radius r > 0,

for any t ∈ T and x = X(t), the center of the ball B(2)
h (x, t) is situated on the

manifold M. The following assumptions ensure that the predictors are dense on
M.

(A1) Assume that for any t ∈ T , the number of sample points outside balls
B2
h(x, t) is bounded and the he following asymptotic irrelevance condition

hold.
E

(
Kγ

(
X−x
h , T−t

h

)
1
(
(X(T ), T ) /∈ B2

h(x, t)
)
(X − x)j(T − t)k

)
= O(h1+j+k), for γ = 0, 1, 2, where 1 (z /∈ A) denotes the indicator func-
tion for an element z not belonging to a set A.

(A2) The density fT (·) of T is bounded away from 0 the expected number of
sample points falling inside a ball B2

h(x, t) of radius h centered at (x, t) for
any t ∈ T and x = x(t) ∈ R is proportional to h, i.e., for some constant
ct > 0, P ((Xil, Til) ∈ B2

h(x, t)) = cth.

Assumptions akin to (A8) are encountered in local polynomial regression [6,
21] to facilitate enough sample points to ensure estimation accuracy of the
proposed methods. In particular it holds for a kernel K with exponential tails.
Assumption (A9) concerns the existence of a local “chart” or homeomorphism
from a neighborhood in the predictor space R

2 to a ball in R, along the curve
{(t,X(t)) : t ∈ T }. This manifold structure of the predictor space is crucial
to show that the rate of convergence corresponds to that for 1-dimensional
predictors even though the predictor dimension is R

2. For a generalization of
the nonparametric CORE, where X(t) ∈ R

p, for p > 1 and for any t ∈ T , this
observation still holds true and can be used to reduce the effective predictor
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dimension by one.
The following propositions demonstrate that, while we have a two dimen-

sional predictor (X,T ), the rate of convergence of the proposed estimator still
corresponds to the known optimal rate for a nonparametric regression with a
one-dimensional predictor. A similarly reduced rate of convergence is obtained
for a p-dimensional Euclidean predictor X. The reason that the effective pre-
dictor dimension is p and not (p+1) is the manifold constraint. Proposition 3.1
shows that the bias introduced by changing the concurrent object regression
model m⊕(·, ·) in (2.1) to the intermediate nonparametric version of the CORE
model l̃⊕(·, ·) in (3.8) is negligible for a large enough sample size, if the band-
width parameter for the bivariate kernel is chosen sufficiently small as a function
of the sample size. Proposition 3.2 is about the stochastic convergence of the
nonparametric CORE estimator l̂⊕(·, ·) in (3.13).

Proposition 3.1. Under the regularity assumptions (A1)-(A6), for any given
points t ∈ T and x = X(t) ∈ R,

d(m⊕(x, t), l̃⊕(x, t)) = O
(
h2

)
, as h = hn → 0, nh → ∞,

where h is as in (A1) and n → ∞.

Proposition 3.2. Under the regularity assumptions (A1)-(A9), for any given
points t ∈ T and x = X(t) ∈ R,

d(l̂⊕(x, t), l̃⊕(x, t)) = Op((nh)
−1/2), as h = hn → 0, nh → ∞,

where h is as in (A1) and n → ∞.

In general, the rate of convergence is dictated by the local geometry of the
object space near the minimum as quantified in (A4)-(A6). The derivations for
the pointwise results are in the Appendix D.1 and like Theorem 3 and Theorem
4 of [44], rely on tools from the theory of M-estimation. Combining these two
results leads to the overall rate of convergence of the nonparametric CORE
estimator.

Theorem 3.1. Under the regularity conditions (A1)–(A9),

d(m⊕(x, t), l̂⊕(x, t)) = Op

(
h2 + (nh)−

1
2

)
,

as h = hn → 0, nh → ∞ and n → ∞.

Under the Assumptions (A1)–(A9), if we consider a sequence of bandwidths
of the form h = n−γ , the optimal choice for γ that minimizes the mean square
error is obtained for γ∗ = 1/5 and the resulting rate of convergence is

d(m⊕(x, t), l̂⊕(x, t)) = Op

(
n−2/5

)
.

The nonparametric CORE model and assumptions considered so far are de-
veloped for the caseX(·) ∈ R. For instance, the kernel is assumed to be bivariate,
and the weights sL in (3.6) and their estimates in (3.12) accommodate a real-
valued predictor process. The theory can be generalized for p > 1, however,
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there are practical limitations, including the curse of dimensionality, multiple
bandwidth choices, and one has to account for correlation and differences in
scale between the components of X(·). Under more stringent modeling assump-
tions some of these issues can be avoided by a modeling approach that extends
the notion of linear relationship to the X direction and this will be discussed
next section.

4. Partially global concurrent object regression

In the Euclidean case, a well-established alternative to nonparametric concur-
rent regression is a global/linear varying coefficient model, where for each fixed
time a linear regression of Y (·) on X(·) is assumed. This linear regression rela-
tion can be described by a global weight function applied to the covariate X(·).
This can then be adapted for the case where responses are random objects, by
constructing conditional Fréchet means with this same weight function [44], all
while assuming nonlinear dependence between Y (T ) and T . As before, we first
study the special case of a Euclidean response and then express the CORE func-
tion in (2.1) as an intermediate target expressed as a weighted Fréchet mean,
the weights being globally linear in the X-direction and locally linear in the T -
direction. The partially linear dependence in the X− direction imposes a more
structural model than the general conditional Fréchet mean defined in (2). This
leads to the proposed partially global concurrent object regression model, with
the Euclidean predictor X(·) ∈ R

p, (p ≥ 1) and object response Y (·) ∈ Ω, at
the given points T = t and X(T ) = x as

g̃⊕(x, t)=argmin
ω∈Ω

G̃⊕(ω, x, t), where G̃⊕(ω, x, t) := E
(
sG(X,x, T, t, h)d2(Y, ω)

)
.

(4.1)

Here the weight function sG is given by

sG(z, x, s, t, h) = s1(z, x, s, t, h) + s2(s, t, h), (4.2)

with s1(z, x, s, t, h) := Kh(s− t)
[
(z − μX(t))ᵀΣ−1

20 (x− μX(t))
]
, where μX(t) =

E (X(t)) = E (X|T = t), and s2(s, t, h) := 1
σ2
0
Kh(s − t) (μ02 − (s− t)μ01). For

the explicit derivation of the weight function sG, motivated from the special
case of time-varying Euclidean responses, please refer to Appendix D.4. Here
sG encapsulates the dependence of the response on the predictors, where the
dependence is global in the direction of the covariate X, while it is local in the
T direction, which is reflected in the two parts sG(z, x, s, t, h) = s1(z, x, s, t, h)+
s2(s, t, h).

The partially global CORE model imposes more structure in the predictor
space of X and is less flexible than the nonparametric concurrent object regres-
sion in this sense. However, if there is a global dependence on X, for example, if
the relationship between the response Y and the predictor X follows a geodesic
path, the partially global model is preferable to the nonparametric version. In
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addition, the partially global CORE is useful for a higher dimensional predictor
in the sense that it provides a more stable estimation method and avoids the
curse of dimensionality, from which the nonparametric model suffers inherently.
In practice, one should implement a partially global or a nonparametric CORE
method by checking whichever method results in a smaller prediction error. The
computation of the root mean squared prediction error for positive semi definite
matrix objects for the Frobenius norm is illustrated in (6.3) in Section 6.1.

Observe that s1(·, μX(t), ·, ·, ·) = 0, that is, the regression model reduces to
a nonparametric regression model with the only predictor T when x = μX(t).
We see that

∫
s1(z, x, s, t, h) dF(X,T )(z, s) = 0. Also, under mild assumptions

(Assumption B1 in the Appendix D.3) on the kernel Kh(·) and the smoothness
of marginal and conditional densities f(X,T ) and f(X,T )|Y we can show that (see

the Appendix D.4)
∫
s2(s, t, h) dFX,T |Y (z, s, y) =

dFX,T |Y (z,s,y)

dFX,T (z,s) + O
(
h2

)
. Thus

we may view G̃⊕ as a smoothed version of M⊕ as the bandwidth parameter
h = hn → 0 (see the Appendix D.4).

Finally, we propose a plug-in estimate for the partially-global regression
model g⊕ in (4.1). For this purpose we define the preliminary estimates of the
auxiliary parameters as follows

μ̂0j :=
1

n

n∑
i=1

1

ni

ni∑
l=1

Kh(Til − t)(Til − t)j , (4.3)

Σ̂2j :=
1

n

n∑
i=1

1

ni

ni∑
l=1

Kh(Til − t)(Til − t)j(Xil − μ̂X(t))(Xil − μ̂X(t))T , (4.4)

σ̂2
0 := μ̂02μ̂00 − μ̂2

01. (4.5)

The mean function μX(·) for the predictor process X(·) is estimated by μ̂X(·)
by smoothing the aggregated data (Til, Xil) i = 1, . . . , n, j = 1, . . . , ni, with
local linear fitting [66]. We then calculate empirical weights using the auxiliary
parameters from above as

ŝGil (x, t, h) =Kh(Til − t)[(Xil − μ̂X(t))
T
Σ̂−1

20 (x− μ̂X(t))

+
1

σ̂2
0

(μ̂02 − (Til − t)μ̂01)]. (4.6)

The proposed partially global concurrent object regression (CORE) estimate is
given by

ĝ⊕(x, t) := argmin
ω∈Ω

Ĝ⊕(ω, x, t), where

Ĝ⊕(ω, x, t) :=
1

n

n∑
i=1

( 1

ni

ni∑
l=1

ŝGil (x, t, h)d
2(Yil, ω)

)
. (4.7)

Further motivation of this approach, starting from the case of Euclidean re-
sponses, can be found in the Appendix D.2. We show consistency with an op-
timal rate for the proposed model to the target CORE function in (2.1) under
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assumptions (B1)–(B6) (see the Appendix D.3), which are similar to the as-
sumptions (A1)–(A6) in Section 3.

Proposition 4.1. Under the assumptions (B1)-(B3), for any given points t ∈ T
and x = X(t) ∈ R

p,

d(m⊕(x, t), g̃⊕(x, t)) = O
(
h2

)
, as h = hn → 0 and n → ∞.

Proposition 4.2. Under the assumptions (B1)-(B6), for any given points t ∈ T
and x = X(t) ∈ R

p,

d(ĝ⊕(x, t), g̃(x, t)) = Op((nh)
−1/2), as h = hn → 0, nh → ∞, and n → ∞.

Combining these two results leads to the pointwise consistency for the par-
tially global CORE estimator as follows:

Theorem 4.1. Under Assumptions (B1)–(B6),

d(ĝ⊕(x, t),m⊕(x, t)) = Op(h
2 + (nh)−1/2),

as h = hn → 0, nh → ∞, and n → ∞.

Comparing to the local rates of convergence for the nonparametric CORE
estimator, as proposed in Section 3, the rates in Propositions 4.1 and 4.2 are
global in the predictor X and remain unchanged even for a higher predictor
dimension p, p > 1. For p = 1, both the estimators behave in a similar manner,
however as p increases the partially global estimator performs better in terms of
the rate of convergence to the true CORE model in (2.1). While the above results
are pointwise, a uniform convergence result in a compact interval in the X-
direction also holds for any given point in the T -direction, under slightly stronger
assumptions (see assumptions (U1)-(U4) in the Appendix D.3). Denoting the
Euclidean norm on R

p by ||·||E , we obtain

Theorem 4.2. Under the assumptions (U1)-(U4), for any given t ∈ T and
M > 0,
as h = hn → 0 and nh → ∞,

sup
||x||E≤M

d(ĝ⊕(x, t),m⊕(x, t)) = Op

(
h2 + (nh)−1/2+δ

)
, for any δ > 0.

The proofs require results from empirical process theory
(see the Appendix D.4).

5. Simulation studies

5.1. Distributional object responses

We illustrate the efficacy of the proposed methods through simulations, where
the space of distributions with the Wasserstein metric provides an ideal setting.
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We consider time-varying distributions on a bounded domain T as the response,
Y (·), and they are represented by the respective quantile functions Q(Y )(·). The
time-varying Euclidean random variable X(·) is taken as the predictor. The
random response is generated conditional on (X(T ), T ), by adding noise to the
true regression quantile

Q(m⊕(x, t))(·) = E (Q(Y )(·)|X(t) = x, T = t) . (5.1)

Two different simulation scenarios are examined as we generate the distribution
objects from location-scale shift families (see Table 1). In the first setting, the
response is generated, on average, as a normal distribution with parameters that
depend on (T,X(T )). For T = t, X(T ) = x, the distribution parameters μ ∼
N(ζ(x, t), ν1) and σ ∼ Gamma

(
η2(x,t)

ν2
, ν2

η2(x,t)

)
are independently sampled. The

corresponding distribution is given by Q(Y )(·) = μ+σΦ−1(·). Here, the relevant
sub-parameters are chosen as ν1 = 0.1, ν2 = 0.1, ζ(x, t) = 0.5+0.1x+0.1t2, and
η(x, t) = 0.5+0.1x+0.1 sin(10πt), and Φ(·) is the standard normal distribution
function.

The second setting is slightly more complicated. The distributional parameter
μ|(X(t) = x, T = t) is sampled as before and σ = 0.1 is assumed to be a fixed
parameter. The resulting distribution is then “transported” in Wasserstein space
W via a random transport map T , that is uniformly sampled from the collection
of maps Tk(a) = a−sin(ka)/|k| for k ∈ ±1,±2. The distributions thus generated
are not Gaussian anymore due to the transportation. Nevertheless, one can show
that the Fréchet mean is exactly μ+ σΦ−1(·) as before.

Table 1

Table showing two different simulation scenarios.

Setting I Setting II

Q(Y )(·) = μ+ σΦ−1(·),
where
μ ∼ N(ζ(x, t), ν1)

σ ∼ Gamma
(

η2(x,t)
ν2

, ν2
η2(x,t)

)
Q(Y )(·) = T#(μ+ σΦ−1(·)),
where
μ ∼ N(ζ(x, t), ν1)
σ = 0.1,
Tk(a) = a− sin(ka)/|a|, k ∈ {±1,±2}

In Table 1, T#p is a push-forward measure such that T#p(A) = p({x :
T (x) ∈ A}), for any measurable function T : R → R, distribution p ∈ W ,
and set A ⊂ R. Here the random transport map T is uniformly sampled from
the collection of maps Tk(a) = a − sin(ka)/|a|, k ∈ {±1,±2}, p is a Gaussian
distribution with parameters μ and σ as described in above, and W is the metric
space of distributions equipped with the Wasserstein metric.

To this end, we generated a random sample of size n of time-varying response
and predictors from the true models, where the ith sample was observed at ni

random time points, incorporating measurement error as described in the two
situations above. For simplicity, we chose ni = m to be equal for all subjects and
consider the two cases with ni = 5 and ni = 20. Each such case was repeated for
sample sizes n = 100 and n = 1000. For a given ni and n, we first sampled the

time points Til
i.i.d.∼ Unif(0, 1) for l = 1, . . . ni and i = 1, . . . , n. The predictor
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trajectories Xi(·) were generated as follows. The simulated processes X had the
mean function μX(t) = t+sin(t), with covariance function constructed fromK =
10 eigen functions, φ1(t) = − cos(πt/10)/

√
5, and φj(t) = sin((2j−1)πt/10)/

√
5,

for t ∈ [0, 1], j = 2, . . .K. We chose λ1 = 1, λ2 = .7, to be the first two eigen
values and λj = (0.7)j−1 for j = 3, . . . ,K as the remaining eigenvalues. The FPC
scores ξij s were generated from N(0, λj) truncated on [−6, 6] for j = 1 . . . ,K.
Using the Karhunen–Loève theorem, the predictor process is generated at the
random time-points T+il asXi(Til) = μX(Til)+

∑K
j=1 ξijφj(Til) for l = 1 . . . , ni

and i = 1 . . . , n.
For each of Setting I and II, 500 Monte Carlo runs were executed for a

combination of sample sizes n and ni, including both sparse and dense designs.
For the rth simulation, f̂r

⊕(x, t) denoting the fitted distribution function, and
fr
⊕(x, t) denoting the simulated density objects, the utility of the estimation was
measured quantitatively by the integrated squared errors

ISEr =

∫ 1

0

∫ 6

−6

d2W (f̂r
⊕(x, t), f

r
⊕(x, t))dxdt, (5.2)

where dW denotes the Wasserstein metric between two distributions.

We fitted both of the nonparametric and partially global concurrent ob-
ject regression (CORE) models over a grid of points x = x(t) ∈ [−6, 6] and
t ∈ [0, 1]. The bandwidths for the estimation in both the settings were chosen
over a grid of possible values using a cross validation criterion so as to minimize
the average ISE for all simulations. For the x− direction a grid of bandwidths
h2 ∈ [n−1/5, 3.18n−1/5] was used for this purpose, while for the t− direction a
grid of bandwidths h1 ∈ [0.05n−1/5, 0.265n−1/5] was used. A truncated bivari-
ate Gaussian product kernel and a truncated univariate Gaussian kernel were
chosen to fit the nonparametric CORE and the partially global CORE methods,
respectively.

In Setting I, the performances of the proposed CORE models were compared
to a baseline linear concurrent model, which is mis-specified in our case. As such,
since in the first setting we knew the finite-dimensional generating model, we
computed the mean μi(Til) and standard deviation σi(Til) of the distribution Yil

and regressed each of them linearly against the predictors (Xil, Til). The quantile
functions for the baseline model was computed as μ̂(x, t)+ σ̂(x, t)Φ−1(·), where
μ̂(x, t) and σ̂(x, t) were the estimated mean and variance functions at (x, t) using
the fitted coefficients from the previous step. Clearly, the baseline concurrent
model is mis-specified, but it highlights the fact that the proposed CORE mod-
els are the only applicable regression model, to the best of our knowledge, in
the context of concurrent regression for distributional object responses. We also
compared the performance of the CORE models to that of the global Fréchet
regression (GFR) model [44] where T andX were used as a two-dimensional pre-
dictor, ignoring the inherent nested structure of the predictor space (T,X(T )).
We observed a decrease in ISE for all the models as the sample size was increased,
favorably for the denser design with ni = 20 (see Figure 1). The CORE mod-
els outperformed both the baseline (mis-specified) model and the GFR model.



CORE 4047

Fig 1. Boxplots of Integrated Squared Errors (ISE) over 500 simulation runs and different
sample sizes for density estimates resulting from partially global and nonparametric concur-
rent object regression (CORE), global Fréchet regression (GFR) and a baseline model in the
simulation setting I, as described in Table 1.

Further, the partially global CORE had slightly lower ISE value than the non-
parametric one, specially for denser designs. In this setting either of the CORE
model can be implemented to get a small ISE. In fact, the GFR model also
gives reasonable estimates except for some outliers. This can be expected since
in this simulation setting, the global model holds true in the x− direction.

Further, under simulation Setting-I, the performance of the proposed par-
tially global concurrent object regression (CORE) model is compared to the
global Fréchet regression (GFR) method for distributional object responses with
increasing the predictor dimension p in Figure 16 of Appendix E.

In the second simulation setting, the baseline linear model is no longer admis-
sible due to the random transportation step, thus the baseline model is dropped
for the comparison purpose. However, we could still compare the performances
among the two proposed CORE models and the GFR model. Both CORE meth-
ods performed in a similar manner and outperformed the GFR in all scenarios
(see Figure 2). We again observed a decreasing pattern of the integrated squared
errors for increasing sample sizes and denser designs, demonstrating the valid-
ity of the CORE models for this complex and time-varying regression setting.
The nonparametric CORE performed better for a higher sample size. This is
not unexpected since the data generating mechanism was non-linear and the
partially global model assumes a linear dependence in the x− direction. The
simulation Setting-II shows the relative efficiency of the nonparametric CORE
versus the partially global CORE and GFR for a non-linear structure of the
predictor space.
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Fig 2. Boxplots of Integrated Squared Errors (ISE) for 500 simulation runs and different
sample sizes for density estimates resulting from partially global and nonparametric concur-
rent object regression (CORE) and global Fréchet regression (GFR) for simulation setting II,
as described in Table 1.

5.2. Object responses on a unit sphere

We next implemented our methodology when the responses lie on a Rieman-
nian manifold object space – in particular we considered responses lying on the
surface of a unit sphere S2 in R

3 with the center being the origin. The geodesic
distance between any two points ω1 and ω2 lying on the surface of the unit
sphere S2 is given by d(ω1, ω2) = arccos(ωT

1 ω2). We considered the concurrent
object regression function as follows

m⊕(x, t) = ((1− (x/a)
2
)1/2 cos(πt),(1− (x/a)2)1/2 sin(πt), (x/a)),

t ∈ (0, 1), x ∈ (−a, a), a > 0.

We first generated the predictor process (Til, Xi(Til)) as before (see Section 5.1)
such that Til ∈ (0, 1) and Xi(Til) ∈ (−a, a) with a = 6 for l = 1, . . . , ni,
i = 1 . . . , n. The response was then constructed as follows. A bivariate noise
random vector was generated on the tangent space Tm⊕(Xil,Til)(Ω). To this end,
we defined ψil = arcsin(Til) and θil = πTil. An orthonormal basis for the tangent
space was denoted by (b1il, b2il), where b1il = (cos(ψil) cos(θil), cos(ψil) sin(θil),
− sin(ψil))

T and b2il = (sin(θil),− cos(θil), 0)
T . Adding a noise level σ2 = 0.1,

bivariate random vectors Zil = ci1b1il + ci2b2il were computed, where Ci =

(ci1, ci2)
T i.i.d.∼ N2(0, σ

2I2) with σ2 = 0.1. Finally, the response was constructed
as

Yil = cos (‖Zil‖E)m⊕(Xil, Til) + sin (‖Zil‖E)
Zil

‖Zil‖E
,
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Fig 3. Boxplots of Integrated Squared Errors (ISE) for 500 simulation runs and different
sample sizes for object responses on the surface of the unit sphere S2 resulting from partially
global and nonparametric concurrent object regression (CORE).

with ‖·‖E being the Euclidean norm. The simulation steps produced a point
Yil on the surface of the two-dimensional sphere with conditional Fréchet mean
m⊕(Xil, Til) contaminated with a small level of noise.

We fitted the two concurrent object regression (CORE) models for the sim-
ulated data over a grid of points x(t) = x ∈ (−6, 6) and t ∈ (0, 1). For each of
the CORE models, 500 Monte Carlo runs were implemented corresponding to
combinations of sample sizes n and ni, including both sparse and dense designs.
For the rth simulation, at any given point (x, t), Y r

⊕(x, t) and Ŷ r
⊕(x, t) denoted

the simulated and fitted objects on the surface of the unit sphere S2. The per-
formance of the model was measured quantitatively by the integrated squared
errors

ISEr =

∫ 1

0

∫ 6

−6

d2g(Ŷ
r
⊕(x, t), Y

r
⊕(x, t))dxdt, (5.3)

where dg denotes the geodesic distance on a unit sphere S2. The bandwidths
for the estimation were chosen using a cross validation criterion so as to min-
imize the average ISE over all simulations, and a truncated Gaussian kernel
was chosen. Figure 3 shows that, as before, with an increasing sample size and
denser design the average ISE reduces for both nonparametric and partially
global CORE models. In this simulation scenario, both the partially global and
nonparametric concurrent object regression (CORE) methods work compara-
bly and reasonably well in terms of lower estimation error. The partially global
CORE method works slightly better, especially for a larger sample size and
dense design. The outliers present seem to influence the mean ISEs. We report
the median of the ISEs as a more robust measure, along with the mean ISEs for
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varying sample sizes in Table 2.

Table 2

Table displaying the mean and median Integrated Squared Errors (ISE)s for object responses
on the surface of the unit sphere S2 resulting from partially global and nonparametric

concurrent object regression (CORE), as described in Figure 3.

n = 100
ni = 5

n = 100
ni = 20

n = 1000
ni = 5

n = 100
ni = 20

Nonparametric
CORE

Mean 0.9764 0.9685 0.9688 0.9407
Median 0.9766 0.9683 0.9686 0.9394

Partially global
CORE

Mean 0.9811 0.9713 0.9737 0.9316
Median 0.9774 0.9704 0.9724 0.9313

6. Data illustrations

6.1. Brain connectivity in Alzheimer’s disease

Modern functional Magnetic Resonance Imaging (fMRI) methodology has made
it possible to study structural elements of the brain and identify brain regions or
cortical hubs that exhibit similar behavior, especially when subjects are in the
resting state [2, 25]. In resting state fMRI, a time series of Blood Oxygen Level
Dependent (BOLD) signal is observed for the seed voxels in selected functional
hubs. For each hub, a seed voxel is identified as the voxel whose signal has the
highest correlation with the signals of nearby voxels. Alzheimer’s Disease has
been found to have associations with anomalies in functional integration of brain
regions and target regions or hubs of high connectivity in the brain [14, 70].

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). For
up-to-date information, see www.adni-info.org. Brain image-scans for sub-
jects in different stages of the disease were available, along with other relevant
information such as age, gender, and total cognitive score, recorded on the same
date as the scan.

For this analysis, subjects aged from 50 to 90 years and belonging to either
of the Alzheimer’s Disease (AD) or Cognitive Normal (CN) patient groups were
considered. After removing the outliers, the number of image scans recorded
were 174 and 694, respectively, for the 78 AD subjects and 371 CN subjects
who participated in the study. To confirm that the age intervals across the two
groups are comparable, we first performed a Kruskal- Wallis test for the null
hypothesis of equal age distributions of the two groups, which resulted in a
p-value of 0.92, indicating no evidence for systematic age differences.

BOLD signals for V = 10 brain seed voxels for each subject were extracted.
The 10 hubs where the voxels are situated are labeled as follows: LMF and RMF
(left and right middle-frontal), LPL and RPL (left and right parietal), LMT
and RMT (left and right middle temporal), MSF (medial superior frontal),
MP (medial prefrontal), PCP (posterior cingulate/precuneus) and RS (right
supramarginal), as discussed in [9].

adni.loni.usc.edu
www.adni-info.org
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The preprocessing of the BOLD signals was implemented by adopting the
standard procedures of slice-timing correction, head motion correction and nor-
malization and other standard steps. The signals for each subject were recorded
over the interval [0, 270] (in seconds), with K = 136 measurements available
at 2 second intervals. From this the temporal correlations were computed to
construct the connectivity correlation matrix, also referred to as the Pearson
correlation matrix in the area of fMRI studies.

The observations were available sparsely at random time-points, such that
the ith subject is observed at ni time-points, ni varying from a minimum of 1 to
a maximum of 7. The inter-hub connectivity Pearson correlation matrix Yil, for
the ith subject observed at age Til (measured in years), has the (q, r)th element

(Yil)qr =

∑K
p=1(sipq − s̄iq)(sipr − s̄ir)[(∑K

p=1(sipq − s̄iq)2
)(∑K

p=1(sipq − s̄iq)2
)]1/2 , (6.1)

where sipq is the (p, q)th element of the signal matrix for the ith subject and

s̄iq := 1
K

∑K
p=1 sipq is the mean signal strength for the qth voxel.

For Alzheimer’s disease trials, ADAS-Cog-13 is a widely-used measure of cog-
nitive performance. It measures impairments across several cognitive domains
that are considered to be affected early and characteristically in Alzheimer’s dis-
ease [49, 32]. It is important to note that higher scores are associated with more
serious cognitive deficiency. To study how functional connectivity in the brain
varies with the total cognitive score for subjects at different ages, we applied
the CORE models. It is known that age affects both functional connectivity in
the brain and total cognitive score so that the relation of cognitive deficits with
brain connectivity likely changes with age.

We implemented a time-varying or concurrent regression framework with the
Pearson correlation matrices in (6.1) as time-varying object responses, residing
in the metric space of correlation matrices equipped with the Frobenius norm,
and total cognitive scores as real-valued covariates, changing with time (age in
years).

The Frobenius norm in the space of positive semi-definite matrices is related
to a near linear/Euclidean metric. However, the weight function in the concur-
rent object regression (CORE) models can assume negative values, especially
near the boundary, and the optimization algorithm in the CORE models requires
us to project back into the metric space (Ω, d). This facilitates extrapolation for
points outside the dataset, though for this application we do not implement it.

The structure of the space and the results of the concurrent regression (CORE)
methods depend on the choice of the metric. The metric can be chosen for the
appropriate interpretability in the context of the specific data application. For
the ADNI data application in this section the Frobenius metric is a suitable
choice owing to the interpretable results. Another common and useful choice of
metric for the space of positive semi-definite matrices is the square-root power
metric [56, 17, 53, 45]. A comparative illustration is given in Appendix B in the
context of the ADNI data, where the CORE models are implemented using the
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Table 3

Bandwidths used in the nonparametric CORE model for the AD and CN subjects, here h1 is
the bandwidth for age and h2 for total cognitive score.

AD CN
h1 3.95 3.64
h2 3.78 2.43

square-root metric. In the remaining part of this section, we demonstrate the
data application using the Frobenius metric.

Specifically, we fitted the nonparametric CORE in (3.8) separately for the AD
and CN subjects over different output points for age t and total cognitive score
x. The bandwidths in the local fits for both the age and total cognitive score
directions were chosen satisfying a leave-one-out cross validation criterion with
a bivariate Gaussian kernel function, which led to the bandwidths in Table 3.

We fitted the proposed model at the x = 10%, 50%, and 90% quantile values
in the total cognitive score direction where higher total score means larger cog-
nitive impairment, each for a fixed level of t = 10%, 50%, and 90% in the age
direction. We find that, given a quantile value t as the output point in the age
direction, for higher scores and thus increased cognitive impairment, the over-
all magnitude of the absolute values of the pairwise correlations are smaller,
and interestingly there are fewer negative correlations. These effects are more
pronounced at older age.

Perhaps the most interesting finding from the fit (Figure 4) is the variation
of Negative Functional Connectivity (NFC) for the AD subjects [71, 8, 63]. The
positive pairwise correlations between the functional hubs, though reduced in
magnitude, have a higher count when moving from a lower to a higher value in
the total cognitive score direction. However, in the same context, the negative
correlations diminish much more ostensibly in number and magnitude. Thus an
increasing reduction in the negative connectivity can be associated with higher
cognitive impairment, and hence an increased cognitive impairment, in the AD
subjects. Diagnostic plots and visualizations for the fitted nonparametric CORE
model for the AD subjects are provided in Appendix A.

The association between the functional connectivity and total cognitive score
is modulated by age, in the sense that at lower ages the association between cog-
nitive impairment and reduction in Negative Functional Connectivity is weaker
than it is at higher ages. Table 4 shows the total magnitude of the correlations
present in the estimated matrices, measured from the fits in Figure 4. The dif-
ferences between the total magnitude of the positive and the negative pairwise
correlations, the latter being subtracted from the former, is also shown in the
table. We note that the total magnitude of the pairwise correlations present be-
tween the seed voxels diminishes with an increased value of the total cognitive
score x and age t. This suggests weakened connectivity correlation, and thus a
higher cognitive deficit, associated with a larger value of the cognitive score and
higher age among AD subjects. The differences between the magnitudes of the
total positive and negative correlations increase steadily, as the effect (number
and magnitude) of negative correlations fades away faster with higher age and
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Table 4

Each entry in the upper panel of the table shows respectively, the total magnitude of the
positive plus negative correlation values, while each entry in the lower panel shows the

difference in the total magnitudes of the overall positive correlations and the overall negative
correlations present in the estimated matrices in Figure 4 at varying output points of total

cognitive score and age. The lower, median, and higher levels are 10%, 50%, and 90%
quantiles, respectively, for both the total cognitive score and the age directions.

Lower Score Median Score Higher Schore
Lower Age 9.20 4.99 5.97
Median Age 4.07 3.11 4.43
Higher Age 3.47 4.00 2.62

Lower Score Median Score Higher Schore
Lower Age 0.54 0.74 0.94
Median Age 0.92 1.47 1.76
Higher Age 1.55 1.42 1.77

higher values of the total cognitive score. A similar concurrent or time-varying
pattern in the estimated correlation matrices is also present for the CN subjects
(Figure 17 in the Appendix E).

The CORE model can be used to estimate the time-varying nature of the
mean functions, and in this data illustration it captures how the pairwise con-
nectivity correlation between any two seed voxels in the brain is changing over
age. The dynamics of the connection is shown against age for the AD and CN
subjects in Figure 5. Six pairs of voxels are chosen, which show the most change
in magnitude of the pairwise correlation in Figure 4, and the nonparametric
CORE model fitted at x = 10%, 50%, and 90% quantiles of the total cognitive
score, respectively, for varying ages for the AD and CN subjects separately. We
observe that for the AD subjects (in red) the pairwise correlations between the
chosen seed voxels get generally weaker with increasing age as both the positive
and negative functional correlations tend to diminish in magnitude. Further,
the (dotted) lines corresponding to the higher value of the total cognitive score
result in weaker correlations over age. This pattern is not so discernible for the
CN subjects (in green) for the chosen seed voxels.

We also fitted the partially global CORE, as defined in (4.1), to the same
data and compared their performance, where the effect of total cognitive scores
on the age-dependent functional connectivity correlation matrices is modeled
as linear and the effect of age as nonparametric. To this end, the model was
fitted separately for the AD and the CN subjects. The bandwidth parameter
in the “age” direction was again chosen using a leave-one-out cross validation
criterion and a Gaussian kernel was used. For the AD and CN subjects the
optimal bandwidths were found to be 4.12 and 3.22, respectively. We present
the fits corresponding to the AD subjects over a range of output points in Figure
6. We find a similar pattern for the fitted correlation. The overall magnitude of
pairwise correlations diminish with age, however, the change is not so clear in
the score direction. This could be attributed to the nonlinear, possibly quadratic
trend in the cognitive score values (see Figure 6 and Figure 13 in Appendix A),
that the linear weights of the partially global model do not reflect quite well.
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Fig 4. Estimated correlation matrix for the AD subjects fitted locally using nonparametric
CORE in (3.8). The top, middle and bottom rows show, respectively, the fitted correlation
matrices at 10%, 50%, and 90% quantiles of age. For each such age quantile, the columns
(from left to right) depict the estimated correlation structure at x = 10%, 50%, and 90%
quantiles of total cognitive score respectively. Positive (negative) values are drawn in red (blue)
and larger circles correspond to larger absolute values. The figure illustrates the dependence
of functional connectivity on total cognitive score, modulated by age.

The Negative Functional Correlations seem to diminish in effect with higher age
and total cognitive score values.

To investigate the comparative goodness-of-fit of the two models, we com-
puted the average deviation of the fitted from the observed correlation matrices
over the age interval [55, 90],

MSE⊕(t) := d2F (M⊕(t), M̂⊕(t)), (6.2)

M⊕(t) and M̂⊕(t) being the observed and fitted connectivity matrices, respec-
tively, at age t ∈ [55, 90] and dF (·, ·) the Frobenius distance between two correla-
tion matrices. Deviation (6.2) is displayed in Figure 7 for both the nonparametric
and partially global CORE models. The partially global model seems to fit the
data better, which could indicate that the linear constraint for the impact of
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Fig 5. Figure showing the time (age)-varying nature of the fitted inter-hub pairwise correla-
tions for six chosen connectivity hubs (RMF-MSF, RMF-PCP, RMF-RS, RMT-MP, MSF-
RS, and PCP-RS, clockwise in the six panels, starting at upper left) for the AD and CN sub-
jects. The dashed, solid, and dotted lines represent the estimated correlation at x = 10%, 50%,
and 90% quantiles of the total cognitive score, respectively, for varying ages. For the AD
subjects, the positive (negative) correlations tend to decrease (increase) towards zero with
increasing age. This pattern is not very evident for the CN subjects.

total cognitive score imposed in the partially global CORE model is likely sat-
isfied. The integrated deviance

∫
T MSE⊕(t)dt is 0.0570 for the nonparametric

CORE and 0.0494 for the Partially CORE.
We further look into the out-of-sample prediction performance of the two

methods for the AD subjects and CN subjects separately. For this, we first ran-
domly split the dataset into a training set with sample size ntrain and a test set
with the remaining ntest subjects. We then take the fitted objects obtained from
the training set, and predict the responses in the test set using the covariates
present in the test set. As a measure of the efficacy of the fitted model, we
compute root mean squared prediction error as

RMPE =

[
1

ntest

ntest∑
i=1

n−1
i

ni∑
l=1

d2F

(
Y test
il , l̂⊕(Xil, Til)

)]−1/2

, (6.3)

where Y test
il and l̂⊕(Xil, Til) denote, respectively, the ith actual and predicted

responses in the test set, evaluated at age Til and total cognitive score Xil. We
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Fig 6. Estimated correlation matrix for the AD subjects fitted locally using partially global
CORE in (4.1). The top, middle and bottom rows show, respectively, the fitted correlation
matrices at 10%, 50%, and 90% quantiles of age. For each such age quantile, the columns
(from left to right) depict the estimated correlation structure at x = 10%, 50%, and 90%
quantiles of total cognitive score respectively. Positive (negative) values are drawn in red (blue)
and larger circles correspond to larger absolute values. The figure illustrates the dependence
of functional connectivity on total cognitive score, modulated by age.

repeat this process 1000 times, and compute RMPE for each split for the AD
and CN subjects separately (See Table 5).

Table 5

Average Root Mean Prediction Error (RMPE) over 1000 repetitions for the AD and CN
subjects, as obtained from the local fits of the nonparametric and partially global CORE
models. Here, ntrain and ntest denote the sample sizes for the split training and testing

datasets respectively.

ntrain ntest nonparametric CORE partially global CORE)
AD 52 26 0.306 0.322
CN 271 100 0.151 0.167

We observe that the out-of-sample predictions errors are quite low for both
the AD and CN subjects. In fact they are in the ballpark of the in-sample-
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Fig 7. Comparison of fits for the two CORE models. The figure shows the average Frobenius
distances between the fitted and the observed correlation matrices across age for the AD
subjects using the nonparametric CORE model (blue) and the partially global CORE model
(red) are illustrated.

prediction error, calculated as the average distance between the observed train-
ing sample and the predicted objects based on the covariates in the training sets,
which supports the proposed CORE models. The nonparametric model shows
a better predictive performance than the partially global CORE.

To confirm the group differences in the time-varying structure of the correla-
tion matrices we further conduct a permutation test. To test the null hypothesis
that, for varying age and total cognitive score values, the AD and CN subjects
have the same conditional correlation matrix objects, we use the heuristic test
statistic, measuring the average discrepancy of the fit for the AD and CN groups
as ∫

S(x, t) dx dt =

∫
d2F

(
Σ̂AD(x, t), Σ̂CN(x, t)

)
dx dt. (6.4)

Here Σ̂AD(x, t) and Σ̂CN(x, t) denote the estimated correlation matrix objects
at total cognitive score x and age t, for the AD and CN subjects respectively,
with x ∈ [5, 70] and varying age t ∈ [55, 90] and dF (·, ·) is the Frobenius norm
between two matrix objects.

All the observations are pooled, and the test statistic calculated for every
possible way of dividing the pooled values into two groups of size 174 and 694.
The set of these calculated test statistic values is the exact distribution of pos-
sible differences under the null hypothesis. The p-value of the test is calculated
as the proportion of sampled permutations where the computed test-statistic
value is more than or equal to the test statistic value obtained from the ob-
served sample. Using 106 permutation samples, and the estimation methods
being the nonparametric CORE and partially global CORE, the p-values are
found to be 0.009 and 0.002, respectively. Thus both the methods are able to
detect a significant difference in the functional connectivity between the AD and
CN subjects, providing evidence that the CORE model is useful to differentiate
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these groups. A further look into the time-varying regression fits for those con-
nectivity hubs that show a change in the magnitude of the correlations across
the AD and CN subjects (see Figure 5) also indicates differences between the
AD and CN subjects.

6.2. Impact of GDP on human mortality

The Human Mortality Database (https://www.mortality.org/) provides
yearly life table data differentiated by gender for 37 countries across 50 years.

For our analysis, we considered the life tables for males according to yearly
age-groups varying from age 0 to 120 for 22 countries over 14 calendar years,
1997-2010. Life tables can be viewed as histograms, which then can be smoothed
with local least squares to obtain smooth estimated probability density func-
tions for age at death. We carried this out for each year and country, using
the Hades package available at https://stat.ucdavis.edu/hades/ for smoothing
the histograms with a choice of the bandwidth as 2 to obtain the age-at-death
densities. Thus these data can be viewed as a sample of time-varying univariate
probability distributions, for a sample of 22 countries, where the time axis rep-
resents 14 calendar years and the observations made at each calendar year for
each country correspond to the age at death distribution, over the age interval
[0, 120], for that year. An illustration of the time-varying age at death distribu-
tions represented as density functions over the calendar years for four selected
countries is in Figure 19 in the Appendix E.

The data on GDP per capita at current prices is available at the World
Bank Database at https://data.worldbank.org. Considering the observed age-at-
death densities for the countries over the calendar years as time-varying random
objects that reside in the space of distributions equipped with the Wasserstein-
2 metric, and GDP per capita for these countries as real-valued time-varying
covariates, we fit the proposed concurrent object regression (CORE) models
as described in Section 3 and 4. Figure 8 illustrates the time-varying nature
of the fitted nonparametric CORE model, as per (3.8). We observe that for a
fixed calendar year t the fitted densities appear to shift towards the right as
the value of the covariate GDP increases, thus indicating that GDP per capita
is positively associated with longevity at a fixed calendar year. If alternatively
moving along the calendar years for a fixed GDP-value, one again observes an
increasing trend in longevity.

Figure 9 shows the 3D plots for the fitted densities over the years for four
countries- Australia, Finland, Portugal and the USA We find that over the cal-
endar years the modes for the age-at-death densities are shifted towards older
age and that the probability of death before age 5 declines for all the four coun-
tries, indicating increasing life expectancy. Also, we notice that, for example, the
USA improves on child mortality over the years while for Finland it remains low
throughout. These fits match quite well with the observed densities in Figure
19 (see the Appendix E).

Further, the time-varying nature of the observed and estimated age-at-death
densities are illustrated in Figure 10 and 11 for the USA. The left and right

https://www.mortality.org/
https://stat.ucdavis.edu/hades/
https://data.worldbank.org
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Fig 8. Fitting the nonparametric concurrent object regression (CORE) model in (3.8). In the
left panel, the locally fitted densities of human mortality distributions, at the year t = 2005
and GDP value x = mean(GDP)−2× sd(GDP), x = mean(GDP) and x = mean(GDP)+2×
sd(GDP) are displayed in red, green and blue lines respectively. The right panel shows the
fitted densities for the USA, varying over the years 1997-2010.

Fig 9. Estimated age at death density functions over the years for males in Australia, Finland,
the USA, and Portugal, clockwise in the four panels, starting at the upper left.

panels of Figure 10 show the observed and estimated densities over the years.
The nonparametric concurrent regression (CORE) model provides reasonable
estimates of the observed densities and is able to recover a pattern of longevity
extension in that the modes of the densities are shifting rightwards with increas-
ing calendar time, thus indicating increasingly later age-at-death as expected.
This observation is in line with the heatmap contours for the estimated dis-
tributions over the years for the USA, which is displayed in Figure 11, with
calendar year as the Y -axis and the estimated age-at-death densities as the X-
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Fig 10. The left and right panel of the figure show the observed and estimated age-at-death
densities over the years for males in the USA, respectively.

Fig 11. Figure displaying the heatmap contours for the estimated density functions over the
years.

axis, linearly interpolating between years for continuity. The variation from year
to year is marked by an increase in both the location and height of the peak in
mortality. We also fitted the partially global CORE, as defined in (4.1), to the
same data and compared their performance, where the effect of GDP is mod-
eled as linear and the effect of calendar year as nonparametric. The left panel
of Figure 12 indicates that the fits are very similar at randomly chosen points
x = mean(GDP); t = 2005.

For both models, the bandwidth h is chosen by leave-one-out cross validation
method, as the minimizer of the mean discrepancy between the regression esti-
mates and the observed age-at-death density functions and a Gaussian kernel is
used. To investigate the comparative goodness-of-fit of the two models further,
we computed the average deviation of the fitted from the observed densities for
each of the 14 calendar years as

MSE⊕(t) :=
1

n

n∑
i=1

dW (fi⊕(t), f̂i⊕(t)), (6.5)

fi⊕(t) and f̂i⊕(t)) being the observed and fitted age-at-death densities for the
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Fig 12. Comparing the fits of partially global (4.1) and nonparametric (3.8) concurrent
object regression (CORE) models. The left panel shows the local fits at the points x =
median(X), t = 2005, comparing both models. The blue and red curves represent the non-
parametric and the partially global regression fits, respectively. The purple curves in are the
observed densities for the year 2005. In the right panel the average Wasserstein distances
between the fitted and the observed densities across the calendar years for the nonparametric
model (blue) and the partially global model (red) are illustrated.

ith country, i = 1, . . . , n, respectively, at calendar years t ∈ {1997, . . . 2010}
and dW (·, ·) the Wasserstein-2 distance between two densities (distributions).
Deviation (6.5) is displayed in the right panel of Figure 12 for both the non-
parametric and partially global CORE models. The nonparametric model seems
to fit the data better, which could indicate that the linear constraint for the im-
pact of GDP imposed in the partially global Core model is likely not satisfied.
The integrated deviance

∫
T MSE⊕(t)dt is 0.413 for the nonparametric CORE

and 0.580 for the Partially CORE.
Observe that there is big outlier in Figure 12 in the observed age-at-death

densities for the country Bulgaria. This might have a large leverage or influence
in the GDP per capita vs mortality regression relationship. We carry out the
same analysis after removing this possible outlier (see Appendix C).

7. Concluding remarks

The proposed concurrent object regression (CORE) is useful for the regression
analysis of random objects, where it complements Fréchet regression, by extend-
ing the notion of conditional Fréchet means further to a concurrent or varying
coefficient framework. We provide theoretical justifications including rates of
pointwise convergence for both global and local versions of the CORE model,
and a uniform convergence result for the global part. For the special case of Eu-
clidean objects the rates of convergence correspond to the known optimal rates.
The rate of convergence for the nonparametric CORE model is intrinsically con-
nected to an inherent manifold structure of the predictor space. Analogously to
local regression, the nonparametric estimators will suffer from the curse of di-
mensionality if the predictor space is of higher dimension than p = 2 or p = 3.
This calls for future research in dimension reduction in the predictor space. A
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feature of interest is that we do not require observing the complete stochas-
tic processes {(X(t), Y (t)) : t ∈ T } but only need samples taken at random
predictor times, and our methods can be adapted for sparse and longitudinal
predictors.

Appendix A: Model diagnostic plots for ADNI data application in
Section 6.1

We illustrate the visualization of our fitted model and run diagnostic plots to
gain insights into how the CORE models fit the data. For the ADNI data ap-
plication in Section 6.1, the responses are random correlation matrix objects,
residing in the space of positive semi-definite matrices equipped with the Frobe-
nius norm. Thus data visualization and model diagnostic is a challenging and
very important tool for regression of such random objects, as the regression re-
lation may be even more difficult to discern among the complex details of the
objects.

We define an analogue of squared residuals from the estimation as r2il =

d2F (Yil, Ŷil), where Yil and Ŷil are the observed and estimated correlation matri-
ces for i = 1, . . . , n, and l = 1, . . . ni, and dF is the Frobenius norm. Note that
the squared residual distances are always positive, just like for the Euclidean
case. Heuristically by plotting the squared residuals r2il s against the “predicted”

distances d2F (μ̂F , Ŷil), the one can discern patterns to associate with a lack of fit
of the model (see the left panel of Figure 13). Here the predicted distances mea-
sure the distance of each fitted observation Ŷil from their empirical barycenter

μ̂F = argmin
ω∈Ω

1
n

n∑
i=1

1

ni

ni∑
l=1

d2(Ŷil, ω) as a baseline. More points are concentrated

towards a smaller value for the distance in the x-axis suggesting that the fitted
observations are mostly close to their their empirical barycenter. A lack of pat-
tern in the figure shows a good fit for the model. The right panel of Figure 13
shows the scatter plot for the data pairs (Xi(Til), Til) in the predictor space, as
a part of the process. We notice a quadratic trend for the increase in the total
cognitive score X with age T . To this end, we fit a local linear model to get an
estimate of X(T ) vs T in the predictor space.

Appendix B: ADNI data application in Section 6.1 using square
root power metric

In this section we consider the space of positive semi definite matrices equipped
with the square-root power metric. Let S = UΛUT be the usual spectral de-
composition with U an orthogonal matrix and Λ diagonal with strictly positive
entries. A broad family of covariance matrix metrics is the set of power Euclidean
metrics

dA(S1, S2) = ‖Sα
1 − Sα

2 ‖F , α ≥ 0. (B.1)
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Fig 13. Visualization of the model diagnostics for the nonparametric concurrent object re-
gression (CORE) model in (3.8) for AD subjects. The left panel shows the residual-vs-fitted
distance plots. In the right panel the plot of X(T ) vs T is shown along with a local linear fit
in red.

where Sα
j = UjΛ

α
j U

T
j for some orthogonal matrix Uj and diagonal matrix with

strictly positive entries Λj for j = 1, 2 and ‖S‖F =
√

trace(XTX) is the Frobe-
nius norm. We may consider any α ∈ R depending on the specific situation. The
special cases of α = 0 corresponds to the log-Euclidean metric [17] while α = 1
is just the Frobenius distance.

For many useful application α = 1/2 is chosen [56, 46, 53] as a suitable
metric. Figure 14 below is an analog of Figure 4 in Section 6.1, where the
nonparametric CORE model in (3.8) is fitted over different output points for
age t and total cognitive score x for the AD (Alzheimer’s) subjects. The time-
varying or concurrent regression framework is carried out with the Pearson
correlation matrices in (6.1) as time-varying object responses, residing in the
metric space of positive semi-definite matrices equipped with the square-root
power norm, and total cognitive scores as real-valued covariates, changing with
time (age in years). As before, the bandwidths in the local fits for both the age
and total cognitive score directions were chosen satisfying a leave-one-out cross
validation criterion with a bivariate Gaussian kernel function.

The proposed model is fitted at the x = 10%, 50%, and 90% quantile values
in the total cognitive score direction, where higher total score means larger
cognitive impairment, each for a fixed level of t = 10%, 50%, and 90% in the age
direction. Our finding is similar to that in Figure 4. We find that for AD subjects
an overall smaller magnitude of the absolute values of the pairwise correlations
can be associated with higher total cognitive scores and thus increased cognitive
impairment, the effects being more pronounced at older age.

Appendix C: Mortality-vs-GDP data application in Section 6.2
after removing outlier observation

The country Bulgaria seems to be an outlier among the sample of age-at-death
densities for different countries over the years and has a right-skewed distribu-
tion. We rerun the data analysis after removing Bulgaria from the sample.
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Fig 14. Estimated correlation matrix for the AD subjects fitted locally by nonparametric
CORE in (3.8) using the square-root power metric. The top, middle and bottom rows show,
respectively, the fitted correlation matrices at 10%, 50%, and 90% quantiles of age. For each
such age quantile, the columns (from left to right) depict the estimated correlation structure
at x = 10%, 50%, and 90% quantiles of total cognitive score respectively. Positive (negative)
values are drawn in red (blue) and larger circles correspond to larger absolute values. The
figure illustrates the dependence of functional connectivity on total cognitive score, modulated
by age.

In the left panel of Figure 15, the nonparametric and partially global concur-
rent object regression models are fitted at chosen points (x = median(GDP),
t = 2005), while the right panel of Figure 15 shows the comparative goodness-
of-fit of the two CORE models by computing the average deviation of the fitted
from the observed densities for each of the 14 calendar years from 1997 to 2010
as per equation (6.5). After removing the possible outlier from the sample, the
performances of the partially global nonparametric CORE models look very
similar.
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Fig 15. Comparing the fits of partially global (4.1) and nonparametric (3.8) concurrent object
regression (CORE) models after removing the outlier from the sample. The left panel shows
the local fits at the points x = median(X), t = 2005, comparing both models. The blue and
red curves represent the nonparametric and the partially global regression fits, respectively.
The purple curves in the left panel are the observed densities for the year 2005. In the right
panel the average Wasserstein distances between the fitted and the observed densities across
the calendar years for the nonparametric model (blue) and the partially global model (red) are
illustrated.

Appendix D: Technical proofs and additional lemmas

D.1. Proofs for Section 3

Recall the definition of the auxiliary parameters introduced in (3.4),

μjk = E
(
Kh1,h2(X − x, T − t)(X − x)j(T − t)k

)
, and

τjk(y) := E
(
Kh1,h2(X − x, T − t)(X − x)j(T − t)k|Y = y

)
for all j, k = 0, 1, 2.

Lemma D.1. Under assumptions (A1), (A2),

μjk = hj+k
[
fX,T (x, t)Kjk + hK(j+1)k

(
∂

∂z
fX,T (z, s)

)∣∣∣
(x,t)

+ hKj(k+1)

(
∂

∂s
fX,T (z, s)

)∣∣∣
(x,t)

+O
(
h2

)]
,

τjk(y) = hj+k
[
f(X,T )|Y (x, t, y)Kjk + hK(j+1)k

(
∂

∂x
f(X,T )|Y (z, s, y)

)∣∣∣
(x,t)

+ hKj(k+1)

(
∂

∂t
f(X,T )|Y (z, s, y)

)∣∣∣
(x,t)

+O
(
h2

)]
,

where the O(h2) terms are uniform over y ∈ Ω.

Proof. It is a straightforward application of a Taylor expansion around the
neighborhood of the point (x, t) on the densities, making use of the assump-
tions.
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Recall,

σ2
0 =

(
μ00μ20μ02 − μ00μ

2
11 − μ2

10μ02 − μ2
01μ20 + 2μ01μ10μ11

)
.

From Lemma D.1, it follows that σ2
0 = h4

[
Mf3

X,T (x, t) +O (h)
]
for some con-

stant M > 0.

Lemma D.2. Under assumptions (A1)-(A7) and additionally assuming that,
sup
x,t,y

|f ′′
(X,T )|Y=y(x, t, y)| < ∞,

L̃⊕(ω, x, t) = M⊕(ω, x, t) +O
(
h2

)
.

Proof. The proof follows a similar line of argument as in the proof of Theorem
3 in [44] with some necessary changes due to the differences in the setup. We
first establish that

dFY |(X,T )(y, x, t)

dFY (y)
=

f(X,T )|Y (x, t, y)

f(X,T )(x,t)
for all (x, t) such that fX,T (x, t) > 0.(D.1)

For any open set U ⊂ Ω define,

a(x, t) :=

∫
U

f(X,T )|Y (x, t, y)

f(X,T ) (x, t)
dFY (y); b(x, t) =

∫
U

dFY |(X,T )(y, x, t),

and observe that by assumption (A3), both a(·, ·) and b(·, ·) are continuous
functions of (x, t). Then for any measurable set A in the Borel sigma algebra on
R

2,

∫
A

a(x, t)f(X,T )(x, t)dxdt =

∫
U

(∫
A

f(X,T )|Y (x, t, y)dxdt

)
dFY (y)

=

∫
A

(∫
U

dFY |(X,T )(y, x, t)

)
f(X,T )(x, t)dxdt =

∫
A

b(x, t)f(X,T )(x, t)dxdt.

The fact that this holds for any measurable set A then implies (D.1). Next
observing that,

sL(z, x, s, t, h1, h2) = Kh1,h2(z − x, s− t) [ν1 + ν2(z − x) + ν3(s− t)]

=
1

σ2
0

Kh1,h2(z − x, s− t)×

[(μ20μ02 − μ2
11) + (μ01μ11 − μ02μ10)(z − x) + (μ10μ11 − μ20μ01)(s− t)]

. we have, using Lemma D.1,∫
sL(z, x, s, t, h)dF(X,T )|Y (z, s, y)

=
1

σ2
0

[
(
μ20μ02 − μ2

11

)
τ00(y) + (μ01μ11 − μ02μ10) τ10(y)
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+ (μ10μ11 − μ20μ01) τ01(y)]

=
f(X,T )|Y (x, t, y)

f(X,T )(x, t)
+O

(
h2

)
,

where the error term is uniform over y ∈ Ω. Finally,

L̃⊕(ω, x, t) =

∫
d2(y, ω)sL(z, x, s, t, h)dF (z, s, y)

=

∫
d2(y, ω)

(
f(X,T )|Y (x, t, y)

f(X,T )(x, t)
+O

(
h2

))
dFY (y)

=

∫
d2(y, ω)

(
dFY |(X,T )(y, x, t)

dFY (y)
+O

(
h2

))
dFY (y)

=

∫
d2(y, ω)dFY |(X,T )(y, x, t) +O

(
h2

)
= M⊕(ω, x, t) +O

(
h2

)
,

where, again, the error term is uniform over ω ∈ Ω. Thus the intermediate
objective function in (3.8) is a smoothed version of the true objective function
in (2.1).

Proof of Proposition 3.1. Assumptions (A3), (A4) regarding the existence and
uniqueness of the minimizer l̃⊕(x, t) and the well-separateness of the objective
functions at the minimizer imply d(m⊕(x, t), l̃⊕(x, t)) = o(1) as h = hn → 0.

Next, similar to the proof of consistency of any M-estimator [58], we define
rh = h−2 and set Sj,n = {ω : 2j−1 < rhd(ω,m⊕(x, t) ≤ 2j}. Denoting the
indicator function by 1 (·), for any large M > 0, under assumption (A5), there
exists a > 0 such that, for large n,

1
(
rhd(l̃⊕(x, t),m⊕(x, t)) > 2M

)
≤ a

∑
j≥M

2−j

r−2
h h−2

≤ a
∑
j≥M

2−j .

The above series converges, yielding that for M > 0,

d(l̃⊕(x, t),m⊕(x, t)) ≤ 2Mh2 = O(h2),

for large n.

Lemma D.3. Under assumptions (A1),(A2),(A8), (A9),

μ̂jk = μjk +Op

[(
h2j+2k−1n−1

) 1
2

]
.

Proof. We provide the proof for the case p = 1 only, that is when X(t) ∈ R,
for any t ∈ T . The case p > 1 is based on essentially the same but more
tedious arguments. The proof exploits the manifold structure of the predictor
space as described before. The fact that E (μ̂jk) = μjk follows immediately
from the definitions. For calculating Var(μ̂jk), first consider the case ni = 1 for
i = 1, . . . , n. For any given t ∈ T and x = x(t) ∈ R, define

Ψil = Kh (Xil − x, Til − t) (Xil − x)
j
(Til − t)

k
. (D.2)
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Observe that

Var (Ψil) ≤ E
(
Ψ2

il

)
=E

(
K2

h (Xil − x, Til − t) (Xil − x)
2j
(Til − t)

2k
)

=E
(
K2

h (Xil − x, Til − t) (Xil − x)
2j
(Til − t)

2k
1
(
(Xil, Til) ∈ B(2)

h (x, t)
))

+ E
(
K2

h (Xil − x, Til − t) (Xil − x)
j
(Til − t)

k
1
(
(Xil, Til) /∈ B(2)

h (x, t)
))

=

∫
1

h4
K2

(
z − x

h
,
s− t

h

)
(z − x)

2j
(s− t)

2k ×

1
(
(z, s) ∈ B(2)

h (x, t)
)
f(X,T )(z, s)dzds+O

(
h1+2j+2k

)
. (D.3)

The last line follows from Assumption (A8). Now, since, for all (z, s) ∈ B(2)
h (x, t),

we have |z − s| ≤ h and |s− t| ≤ h, it follows from (D.3) that

E
(
Ψ2

il

)
≤

∫
1

h4
K2

(
z − x

h
,
s− t

h

)
h2jh2k1

(
(z, s) ∈ B(2)

h (x, t)
)
f(X,T )(z, s)dzds

+O
(
h1+2j+2k

)
By change of variable, and using a second-order taylor expansion of the two
variable density function fX,T (·, ·) around the given points (x, t), the first term
of the above can be simplified to

∫
1

h4
K2

(z − x

h
,
s− t

h

)
h2jh2k1

(
(z, s) ∈ B(2)

h (x, t)
)
f(X,T )(z, s)dzds

≤h2j+2k−2

∫
K2(u, v)1

(
(u, v) ∈ B(2)

h (0, 0)
)
f(X,T )(x+ uh, t+ vh)dudv

=h2j+2k−2

∫
K2(u, v)1

(
(u, v) ∈ B(2)

h (0, 0)
)[

fX,T (x, t)

+ uh

(
∂

∂a
fX,T (a, b)

∣∣∣
(x,t)

)
+ vh

(
∂

∂b
fX,T (a, b)

∣∣∣
(x,t)

)

+ u2h2

(
∂2

∂a2
fX,T (a, b)

∣∣∣
(x∗,t∗)

)

+ v2h2

(
∂2

∂b2
fX,T (a, b)

∣∣∣
(x∗,t∗)

)
+ uvh2

(
∂2

∂a∂b
fX,T (a, b)

∣∣∣
(x∗,t∗)

)]
dudv,

(D.4)

for some x∗ between u and x, and some t∗ between v and t. Now, using Cauchy-
Schwartz inequality, and under assumption (A1), (A2), and (A9) it follows
from (D.4) that∫

1

h4
K2

(z − x

h
,
s− t

h

)
h2jh2k1

(
(z, s) ∈ B(2)

h (x, t)
)
f(X,T )(z, s)dzds
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≤h2j+2k−2[A1h+A2h
2 +A3h

3] = O
(
h2j+2k−1

)
. (D.5)

Combining (D.3) and (D.5) we have,

Var(Ψil) = O
(
h2j+2k−1

)
,

where the order term is independent of the index i and l. Now, note that the
Ψil is independent across i. Thus

Var(μ̂jk) = Var

(
1

n

n∑
i=1

Ψil

)
=

1

n2

n∑
i=1

Var (Ψil) = O
(
h2j+2k−1n−1

)
.

For the case ni ≥ 1 we observe that the Ψil are not independent across l, as the
covariates are measured l = 1, . . . ni times for the same subject. However, Ψil

are independent across i = 1, . . . , n. Using the result just derived for the case
ni = 1 and applying the Cauchy-Schwartz inequality,

Var(μ̂jk) = Var

[
1

n

n∑
i=1

(
1

ni

ni∑
l=1

Ψil

)]
=

1

n2

n∑
i=1

Var

(
1

ni

ni∑
l=1

Ψil

)

=
1

n2

n∑
i=1

[
1

n2
i

ni∑
l=1

ni∑
l′=1

cov (Ψil,Ψil′)

]

≤ 1

n2

n∑
i=1

[
1

n2
i

ni∑
l=1

ni∑
l′=1

√
Var (Ψil)

√
Var (Ψil′)

]

=
1

n2

n∑
i=1

[
1

n2
i

ni∑
l=1

ni∑
l′=1

O
(
h2j+2k−1

)]
= O

(
h2j+2k−1n−1

)
.

Since E (μ̂jk) = μjk and Var (μ̂jk) = O
(
h2j+2k−1n−1

)
, the result follows using

Chebyshev’s inequality.

We note that Lemma D.3 also implies that σ̂2
0 = OP (n

− 1
2h

7
2 ) for the plug in

estimator σ̂2
0 defined in (3.10).

Lemma D.4. Under assumptions (A1)- (A9), for any t ∈ T and x = X(t),

d(l̃⊕(x, t), l̂⊕(x, t)) = oP (1).

Proof. We will first show that L̂⊕−L̃⊕ � 0 in �∞(Ω), where � denotes the weak
convergence of a process and �∞(Ω) is the space of bounded functions on Ω. As
a consequence of Theorem 1.3.6 of [58], this will imply that, ||L̂⊕ − L̃⊕||Ω :=

sup
ω∈Ω

|L̂⊕(ω) − L̃⊕(ω)| P−→ 0, namely, the estimated objective function L̂⊕ in

(3.13) converges in probability to the intermediate objective function L̃⊕ (2.1).
The Lemma follows using Assumption (A4), recalling Theorem 3.2.3 of [58].

Define, sLil := Kh (Xil − x, Til − t) [ν1 + ν2(Xil + ν3(Til − t)], where

ν1 =
1

σ2
0

[μ20μ02 − μ2
11],
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ν2 =
1

σ2
0

[μ01μ11 − μ02μ10],

ν3 =
1

σ2
0

[μ10μ11 − μ20μ01],

σ2
0 =

(
μ00μ20μ02 − μ00μ

2
11 − μ2

10μ02 − μ2
01μ20 + 2μ01μ10μ11

)
,

and the definition of the auxiliary parameters μjk is given by the following, as
described in (3.4)

μjk = E
(
Kh1,h2(X − x, T − t)(X − x)j(T − t)k

)
, j, k = 0, 1, 2.

Then,

L̂⊕(ω)− L̃⊕(ω) =
1

n

n∑
i=1

(n−1
i

ni∑
l=1

[
ŝLil(x, t, h)− sLil(x, t, h)

]
d2(Yil, ω))

+
1

n

n∑
i=1

(n−1
i

ni∑
l=1

[
sLil(x, t, h)d

2(Yil, ω)− E
(
sLil(x, t, h)d

2(Yil, ω)
)]
). (D.6)

Observe that,

ŝLil(x, t, h)−sLil(x, t, h) = Kh (Xil − x, Til − t)
[
W1n+W2n(Xil−x)+W3n(Til−t)

]
,

with

W1n = ν̂1 − ν1; W2n = ν̂2 − ν2; W3n = ν̂3 − ν3. (D.7)

Lemma D.1 and Lemma D.3 imply that W1n = OP ((nh)
−1/2),

W2n = OP ((nh
3)−1/2), W3n = OP ((nh

3)−1/2). Since

E
(
Kh (Xi(Tl)− x, Tl − t) (Xi(Tl)− x)j(Tl − t)kd2(Yi(Tl), ω)

)
= O(hj+k),

E
(
K2

h (Xi(Tl)− x, Tl − t) (Xi(Tl)− x)2j(Tl−t)2kd4(Yi(Tl), ω)
)
= O(h2j+2k−1),

E
(
s2il(x, t, h)

)
= O(h−1),

it follows that both terms in (D.6) are OP

(
(nh)−1/2

)
. Thus L̂⊕(ω)− L̃⊕(ω) =

oP (1) for any ω ∈ Ω. Also any finite dimensional distribution converges weakly,
that is, for any k, L̂⊕(ω1)−L̃⊕(ω1), . . . , L̂⊕(ωk)−L̃⊕(ωk) � 0. This result along
with the asymptotic equi-continuity of the process (L̂⊕(ω) − L̃⊕(ω))ω∈Ω leads
to the desired weak convergence of (L̂⊕ − L̃⊕)ω∈Ω in �∞(Ω). It remains to show
that for any η > 0,

lim sup
N

P

(
sup

d(ω1,ω2)<δ

∣∣∣(L̂⊕ − L̃⊕)(ω1)− (L̂⊕ − L̃⊕)(ω2)
∣∣∣ > η

)
→ 0 as δ → 0.

For this we observe,

E
(
sLil(x, t, h)

)
= O(1); E

(
s2il(x, t, h)

)
= O(h−1),
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1

n

n∑
i=1

n−1
i

ni∑
l=1

∣∣ŝLil(x, t, h)∣∣ = OP (1),

yielding,

∣∣L̂⊕(ω1)− L̂⊕(ω2)
∣∣ ≤ 2 diam (Ω)d(ω1, ω2)

[
1

n

n∑
i=1

( 1

ni

ni∑
l=1

∣∣ŝLil(x, t, h)∣∣)
]

= OP (d(ω1, ω2)), and∣∣L̃⊕(ω1)− L̃⊕(ω2)
∣∣ ≤ 2 diam (Ω)d(ω1, ω2)E

(∣∣sLil(x, t, h)∣∣) = O(d(ω1, ω2)).

Thus,

sup
d(ω1,ω2)<δ

∣∣∣(L̂⊕ − L̃⊕)(ω1)− (L̂⊕ − L̃⊕)(ω2)
∣∣∣

≤ sup
d(ω1,ω2)<δ

∣∣∣L̂⊕(ω1)− L̂⊕(ω2)
∣∣∣ + sup

d(ω1,ω2)<δ

∣∣∣L̃⊕(ω1)− L̃⊕(ω2)
∣∣∣ ≤ δ,

which verifies asymptotic equi-continuity and hence the weak convergence of
(L̂⊕(ω)− L̃⊕(ω))ω∈Ω follows and also the result by assumption (A4).

Proof of Proposition 3.2. We follow a similar line of argument as in the proof of
Theorem 4 in [44]. As before we define sLil := sLil(x, t, h) = Kh (Xil − x, Til − t)×
[ν1 + ν2(Xil + ν3(Til − t)], and the difference between the estimated and inter-
mediate objective functions are Tn(ω) = L̂⊕(ω, ·, ·) − L̃⊕(ω, ·, ·) for any ω ∈ Ω.
Also let Dil(ω, x, t) = d2(Yil, ω)− d2(Yil, l̃⊕(x, t)). We have

|Tn(ω)− Tn(l̃⊕(x, t))| ≤
∣∣∣∣∣ 1n

n∑
i=1

1

ni

ni∑
l=1

[ŝLil(x, t, h)− sLil(x, t, h)]Dil(ω, x, t)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[sLil(x, t, h)Dil − E(sLilDil)]

∣∣∣∣∣ (D.8)

We have seen that from (D.7), W1n = OP

(
(nh)−1/2

)
,W2n = OP

(
(nh3)−1/2

)
,

W3n = OP

(
(nh3)−1/2

)
. Thus, noting that |Dil(ω, x, t)| ≤ 2 diam(Ω)d(ω, l̃⊕(x,

t)), the first term on the right hand side of (D.8) is d(ω, l̃⊕(x, t)), where the
order term is absolute, independent of ω and l̃⊕. Thus, we can define the set

BR ={
sup

d(ω,l̃⊕(x,t))≤δ

∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[ŝLil(x, t, h)−sLil(x, t, h)]Dil(ω, x, t)

∣∣∣∣∣ ≤ Rδ(nh)−1/2
}
,

(D.9)

for R > 0 such that P (Bc
R) → 0.

Next, to control the second term of the right hand side of (D.8), define the
functions gω : R× Ω → R such that

gω(z, s, ω)Kh(z − x, s− t) [ν1 + ν2(z − x) + ν3(s− t)] d2(y, ω),
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and the corresponding function class

Mnδ = {gω − gl̃⊕ : d(ω, l̃⊕(x, t)) < δ}.

An envelope function for Mnδ is given by

Gnδ(z, s) = 2 diam(Ω)δKh(z − x, s− t) [ν1 + ν2(z − x) + ν3(s− t)] ,

such that E(G2
nδ(z, s)) = O

(
δ2h−1

)
. Thus, using Theorems 2.7.11 and 2.14.2

of [58] together with Assumption (A3), we have, for small δ,

E

(
sup

d(ω,l̃⊕(x,t))<δ

∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[sLil(x, t, h)Dil(x, t)− E(sLil(x, t, h)Dil(x, t)]

∣∣∣∣∣
)

= O
(
δ(nh)−1/2

)
. (D.10)

Combining this in (D.8) and the definition of BR in (D.9),

E

(
1 (BR) sup

d(ω,l̃⊕(x,t))<δ

|Tn(ω)− Tn(l̃⊕(x, t)|
)

≤ aδ(nh)−1/2,

where 1 (·) denotes the indicator function and a is a constant depending on
R and the entropy integral in (A7). To finish, let rn = (nh)1/2 and define
Sj,n = {ω : 2j−1 < rnd(ω, l̃⊕(x, t) ≤ 2j}. Choose η2 satisfying Assumption (A6)
such that(A7) is satisfied for any δ < η2. Setting η∗ = η2/2 for any integer M ,

P
(
rnd(l̃⊕(x, t), l̂⊕(x, t) > 2M

)
≤ P (Bc

R) + P (2d(l̃⊕(x, t), l̂⊕(x, t)) > η2)

+
∑

j≥M :2j≤rnη∗

P

({
sup

ω∈Sj,n

|Tn(ω)− Tn(l̃⊕(x, t))| ≥ C
22(j−1)

r2n

}
∩BR

)
,

(D.11)

where the last term goes to zero for any η2 > 0 by Lemma D.4. Since
d(ω, l̃⊕(x, t)) < 2j/rn, on Sj,n, which implies that the sum on the right hand

size of (D.11) is bounded by

4aC−1
∑

j≥M :2j≤rnη∗

2−j

r−2
n (nh)1/2

≤ 4aC−1
∑
j≥M

2−j .

The above series converges. Hence

d(l̂⊕(x, t) = l̃⊕(x, t) = OP (rn) = OP

(
(nh)−1/2

)
.

Theorem 3.1 is a consequence of combining Propositions 3.1 and 3.2 with a
triangle inequality.
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D.2. Background for the partially global concurrent object regression

Proof. Motivation of deriving (4.1) for the Euclidean response case. When
(Ω, d) = (R, dE), we write m⊕(·, ·) = m(·, ·). Assuming the true relation between
the response Y and the predictor X(T ) is linear while there is a smooth non-
parametric relation in the T direction, a partially local linear type estimator of
the regression model m(·, ·) at the point T = t, X(T ) = x is given by m̂(x, t) =

âT (x−μX(t))+ β̂0, where μX(t) = E (X|T = t) = EX|T=t (X(t)) for all t ∈ T .
This can be written alternatively as

(â, β̂0, β̂1) =

argmin
a,β0,β1

1

n

n∑
i=1

[
1

ni

ni∑
l=1

Kh(Til − t)(Yil − aT (Xil − μX(t))− β0 − β1(Til − t))2

]
.

We can view this as an M-estimator of an intermediate population model,

g̃(x, t) = (a∗1(x, t))
ᵀ(x− μX(t)) + β∗

0(t), where

(a∗1, β
∗
0 , β

∗
1)

= argmin
a1,β0,β1

∫ [∫
ydFY |X,T (y, x, t)− aᵀ

1(x− μX(t))− β0 − β1(s− t)

]2
×

Kh(s− t)dFX,T (x, s).

Defining as before the following auxiliary parameters for j = 0, 1, 2,

μ0j := E
(
Kh(T − t)(T − t)j

)
,

Σ2j := E
(
Kh(T − t)(T − t)j(X(T )− μX(t))(X(T )− μX(t))ᵀ

)
,

r0j := E
(
Kh(T − t)(T − t)jY

)
,

r1j := E
(
Kh(T − t)(T − t)jY (X(T )− μX(t))

)
,

σ2
0 := μ02μ00 − μ2

01.

and solving the minimization problem leads to

a∗1 = Σ−1
20 r10, β∗

0 =
r00μ02 − r01μ01

σ2
0

, β∗
1 =

r01μ00 − r00μ01

σ2
0

.

Putting the optimal values of the parameters back in the model,

g̃(x, t) = a∗1(x, t)(x− μX(t)) + β∗
0(x, t) =

∫
sG(z, x, s, t, h)ydF (y, z, s)

E
(
sG (X,x, T, t, h)Y

)
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with weight function,

sG(z, x, s, t, h) = Kh(s− t)
[
(z − μX(t))ᵀΣ−1

20 (x− μX(t))
]︸ ︷︷ ︸

:=s1(z,x,s,t,h)

+
1

σ2
0

Kh(s− t) (μ02 − (s− t)μ01)︸ ︷︷ ︸
:=s2(s,t,h)

Rewriting the framework as the weighted Fréchet mean w.r.t the Euclidean
metric,

g̃(x, t) = argmin
y∈R

E
(
sG(X,x, T, t, h)(Y − y)2

)
= argmin

y∈R

E
(
sG(X,x, T, t, h)d2E(Y, y)

)
,

where g̃ can be viewed as a smoothed version of the true regression function m
with bias m(x, t)− g̃(x, t) = o(1). This alternative formulation of the combina-
tion of a global and a local regression component thus provides the intuition to
define the general population model for metric-space valued random objects as

g̃⊕(x, t) = argmin
ω∈Ω

G̃⊕(ω),where, G̃⊕(ω) := E
(
sG(X,x, T, t, h)d2(Y, ω)

)
.

D.3. Technical assumptions (B1)-(B6) and (U1)-(U4) in section 4

The following is a list of these assumptions which are required for section 4.

(B1) The kernel functionK is a univariate probability density that is symmetric
around zero, with |Kγ

0j | = |
∫
Kγ(u)uj du| < ∞ for j = 1, . . . , 4 and

γ = 0, 1, 2.
(B2) The marginal density f(X,T )(x, t) and the conditional density

f(X,T )|Y (x, t, y) exist, are twice continuously differentiable as a function of
t for all x and all y.

(B3) The Fréchet means m⊕(x, t), g̃⊕(x, t), ĝ⊕(x, t) exist and are unique.
(B4) For any ε > 0,

inf
d(ω,m⊕(x,t))>ε

(M⊕(ω, x, t)−M⊕(m⊕(x, t), x, t)) > 0.

inf
d(ω,g̃⊕(x,t))>ε

(
G̃⊕(ω, x, t)− G̃⊕(g̃⊕(x, t), x, t)

)
> 0.

(B5) There exist η1 > 0, C1 > 0, with d(ω,m⊕(x, t)) < η1 such that

M⊕(ω, x, t)−M⊕(m⊕(x, t), x, t) ≥ C1d(ω,m⊕(x, t))
2.

(B6) There exist η2 > 0, C2 > 0, with d(ω, g̃⊕(x, t)) < η2 such that

lim inf
N

[
G̃⊕(ω, x, t)− G̃⊕(g̃⊕(x, t), x, t)

]
≥ C1d(ω, g̃⊕(x, t))

2.
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These assumptions are required to ensure the existence and uniqueness of the
Fréchet mean in the population and sample cases and the local curvature of the
objective functions near their respective minimums to establish consistency of
the partially global concurrent object regression (CORE) estimator. Also the
relevant entropy conditions are necessary to prove the rate of convergence of
the CORE estimator.

For proving the uniform convergence results in the X-direction for any fixed
value of t, the following additional conditions are used.

(U1) For almost all x such that ||x||E ≤ M , the Fréchet means m⊕(x, t),
g̃⊕(x, t), ĝ⊕(x, t) exist and are unique.

(U2) For any ε > 0,

inf
||x||E≤M

inf
d(ω,m⊕(x,t))>ε

(M⊕(ω, x, t)−M⊕(m⊕(x, t), x, t)) > 0.

Also, there exists ζ = ζ(ε) such that

P

(
inf

||x||E≤M
inf

d(ω,ĝ⊕(x,t))>ε
Ĝ⊕(ω, x, t)− Ĝ⊕(ĝ⊕(x, t), x, t) ≥ ζ

)
→ 1.

(U3) With Bδ(m⊕(x, t)) and N(ε,Bδ(m⊕(x, t)), d), as defined in Assumption
(A7) ∫ 1

0

sup
||x||E≤M

√
1 + logN(δε,Bδ(m⊕(x, t)), d)dε = O(1) as δ → 0.

(U4) There exist constants τ > 0, D > 0 and α > 2 possibly depending on
M such that, for any given t,

inf
||x||E≤M

inf
d(ω,m⊕(x,t))<τ

[M⊕(ω, x, t)−M⊕(m⊕(x, t), x, t)

−Dd(ω,m⊕(x, t)) ≥ 0.

D.4. Proofs for section 4

We use μ0j = E
(
Kh(T − t)(T − t)j

)
and τ0j := E

(
Kh(T − t)(T − t)j |Y = y

)
.

Lemma D.5. Under assumptions (B1)- (B2),

μ0j = hj

[
fX,T (x, t)K0j + hK0(j+1)

(
∂

∂t
fX,T (x, t)

)∣∣∣
t=t

+O
(
h2

)]
,

τ0j = hj

[
fX,T |Y (x, t, y)K0j + hK0(j+1)

(
∂

∂t
fX,T |Y (x, t, y)

)∣∣∣
t=t

+O
(
h2

)]
.

This holds for all x, and in the case of τ0j, the error term is uniform over
all y ∈ Ω.
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Proof. This follows from a second-order Taylor expansion in the second argu-
ment at t = t, under the assumption that the densities exist and are twice
continuously differentiable in the T - direction for all X = x.

Proof of Proposition 4.1. Observe that

(i) Since μX(t) = EX|T=t (X) = E (X(t)|T = t) recalling the fact that∫
s1(z, x, s, t, h)dFX,T (z, s) = 0, we have,∫

d2(y, ω)s1(z, x, s, t, h)dFX,T,Y (z, s, y)

=

∫
d2(y, ω)

(∫
s1(z, x, s, t, h)dF(X,T )|Y (z, s, y)

)
dFY (y) = 0.

(ii) By a similar argument as Lemma D.2 and using Lemma D.5 we find∫
s2(s, t, h)dFX,T |Y (x, s, y)

=

∫
1

σ2
0

Kh(s− t) (μ02 − (s− t)μ01) dFX,T |Y (x, s, y)

=
τ00(y) μ02 − τ01(y) μ01

σ2
0

=
fX,T |Y (x, s, y)

fX,T (x, s)
+O

(
h2

)
=

dFY |(X,T )(y, x, s)

dFY (y)
+O

(
h2

)
.

Hence, proceeding similarly as in Proposition 3.2,∫
d2(y, w)sG(z, x, s, t, h)dFX,T,Y (x, s, y)

=

∫
d2(y, w)s1(z, x, s, t, h)dFX,T,Y (x, s, y)

+

∫
d2(y, w)s2(s, t, h)dFX,T,Y (x, s, y)

=

∫
d2(y, w)

(
dFY |(X,T )(y, x, s)

dFY (y)
+O

(
h2

))
dFY (y)

=M⊕(ω, x, t) +O
(
h2

)
.

Thus, minimizing G̃⊕ is approximately the same as minimizing the conditional
Fréchet function M⊕. Since the error term is uniform over y ∈ Ω by assump-
tions (B3)-(B4)concerning the existence and uniqueness of the minimizer of
the respective objective functions, we have d(m⊕(x, t) − g̃⊕(x, t)) = o(1) as
h = hn → 0. The rate of convergence, hence the result follows using a similar
technique as in the proof of Proposition 3.1.

Proof of Proposition 4.2. Using the empirical weight function defined in (4.3)-
(4.6),

ŝGil = Kh(Til − t)(Xil − μ̂X(t))T Σ̂−1
20 (x− μ̂X(t))︸ ︷︷ ︸

:=ŝ(1)il
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+
1

σ̂2
0

[Kh(Til − t)μ̂20 − (Til − t)μ̂10]︸ ︷︷ ︸
:=ŝ(2)il

, (D.12)

and a set of auxiliary weight parameters

sGil = Kh(Til − t)(Xil − μX(t))TΣ−1
20 (x− μX(t))︸ ︷︷ ︸

:=s(1)il

+
1

σ2
0

Kh(Til − t) [μ20 − (Til − t)μ10]︸ ︷︷ ︸
:=s(2)il

. (D.13)

Note that the weight functions above is a sum of into two separate weight
functions. We observe that,

ŝGil − sGil =
(
U0Kh(Til − t) + UT

1 XilKh(Til − t)
)

+ (V0Kh(Til − t) + V1Kh(Til − t)(Til − t)) ,

where

U0 = U0(x, t) := (μ̂X(t))TΣ−1
20 (x− μ̂X(t))− (μX(t))TΣ−1

20 (x− μX(t));

U1 = U1(x, t, h) := Σ−1
20 (x− μX(t))− Σ̂−1

20 (x− μ̂X(t));

V0 = V0(t, h) :=
μ̂02

σ̂2
0

− μ02

σ2
0

;

V1 = V1(t, h) :=
μ̂10

σ̂2
0

− μ10

σ2
0

.

Then the difference Ĝ⊕(ω)− G̃⊕(ω) can be written as

Ĝ⊕(ω)− G̃⊕(ω) =
1

n

n∑
i=1

(
1

ni

ni∑
l=1

[
ŝGil (x, t, h)− sGil (x, t, h)

]
d2(Yil, ω)

)

+
1

n

n∑
i=1

(
1

ni

ni∑
l=1

[
sGil (x, t, h)d

2(Yil, ω)− E
(
sGil (x, t, h)d

2(Yil, ω)
)])

.

(D.14)

For μ̂X(t) being a local linear estimator of μX(·) at any given point t we have
μ̂X(t) = OP ((nh)

−1/2) [66]. This implies that U0 = OP ((nh)
−1/2) and Σ̂20 =

OP ((nh)
−1/2). Hence ||U1||E = OP ((nh)

−1/2). Also, using Lemma D.5 we have,
V0 = OP ((nh)

−1/2), V1 = OP ((nh
3)−1/2). Since

E
(
Kh(Til − t)(Til − t)jd2(Yil, ω)Xil

)
= O

(
hj

)
,

E
(
K2

h(Til − t)(Til − t)2jd4(Yil, ω)Xil

)
= O

(
h2j−1

)
,

the first term in the above equation isOP ((nh)
−1/2) and also, E

(
(sGil (x, t, h))

2
)
=

O(h−1) which implies that the second term in equation (D.14) is also
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OP ((nh)
−1/2). Thus we have Ĝ⊕(ω) − G̃⊕(ω) = op(1) for any ω ∈ Ω as

nh → ∞. Following the same arguments as in the proof of Proposition 3.2 the
claim follows and then Theorem 4.1, using Propositions 4.1 and 4.2.

Proof of Theorem 4.2. For any given local point t in the T -direction, consider
the process, {Zn(x) := d(ĝ⊕(x, t), g̃⊕(x, t));x ∈ R

p : ||x||E ≤ M for some M >
0}. From Theorem 4.1, Zn(x) = oP (1). To show the uniform convergence of
{Zn(x)} using Theorem 1.5.4 of [58] we need to show the asymptotic equi-
continuity of {Zn(x)}, that is, for any S > 0 and δ → 0,

lim sup
n→∞

P

⎛
⎜⎝ sup

||x−y||E<δ
||x||E≤M, ||y||E≤M

|Zn(x)− Zn(y)| > 2S

⎞
⎟⎠ → 0.

Since, for any given t ∈ T ,
|Zn(x) − Zn(y)| ≤ d(ĝ⊕(x, t), ĝ⊕(y, t)) + d(g̃⊕(x, t), g̃⊕(y, t)), it suffices to

show that g̃⊕(x, t) is uniformly continuous for ||x||E ≤ M and for any S > 0
and δ → 0,

lim sup
n→∞

P

⎛
⎜⎝ sup

||x−y||E<δ
||x||E≤M, ||y||E≤M

d(ĝ⊕(x, t), ĝ⊕(y, t)) > 2S

⎞
⎟⎠ → 0.

We observe that, for δ > 0 and x, y ∈ R
p with ||x− y||E < δ,

sup
ω∈Ω

|G̃⊕(ω, x, t)− G̃⊕(ω, y, t)|

=sup
ω∈Ω

|E
(
(sG(X,x, T, t, h)− sG(X, y, T, t, h))d2(Y,w)

)
|

=sup
ω∈Ω

|E
(
(X − μX(t))TΣ−1

20 (x− y))d2(Y,w)
)
| → 0 as δ → 0.

This, combined with Assumption (U2) implies that, for any given t, g̃⊕(x, t) is
continuous at every x in the compact set where ||x||E ≤ M , hence is uniformly
continuous over {x ∈ R

p : ||x||E ≤ M}. Finally, to show the asymptotic equi-
continuity of d(ĝ⊕(x, t), ĝ⊕(y, t)), let us assume, for any ε > 0 and ||x||E , ||y||E ≤
M , d(ĝ⊕(x, t), ĝ⊕(y, t)) > ε. Then using the form of the corresponding objective
function, Ĝ(ω, x, t), we have,

sup
||x−y||E<δ

||x||E≤M, ||y||E≤M

sup
ω∈Ω

|Ĝ(ω, x, t)− Ĝ(ω, y, t)| = OP (δ).

However, this is a contradiction to Assumption (U2) as δ → 0 and thus first
result follows. Let us write Vn(ω) = Ĝ⊕(ω, x, t) − G⊕(ω, x, t). Thus defining
Dil = d2(Yil, ω)− d2(Yil, g̃⊕(x, t), for any given t ∈ T , we have

|Vn(ω)− Vn(g̃⊕(x, t))| ≤
∣∣∣∣∣ 1n

n∑
i=1

1

ni

ni∑
l=1

[ŝGil (x, t, h)− sGil (x, t, h)]Dil(ω, x, t)

∣∣∣∣∣
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+

∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[sGil (x, t, h)Dil − E(sGilDil)]

∣∣∣∣∣ (D.15)

Note that U0(x, t) and U1(x, t), as described in the proof of Proposition 4.1, are
respectively OP (n

−1/2) and OP ((nh)
−1/2), uniformly over ||x||E ≤ M . Then

sup
||x||E≤M

sup
d(ω,g⊕(x,t))<δ

∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[ŝGil (x, t)− sGil (x, t)]Dil(ω, x, t)

∣∣∣∣∣
= OP

(
δ(nh)−1/2

)
. (D.16)

We can define,

AR ={
sup

||x||E≤M

sup
d(ω,g⊕(x,t))<δ

∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[ŝGil (x, t)− sGil (x, t)]Dil(ω, x, t)

∣∣∣∣∣
≤ Rδ(nh)−1/2

}
,

for R > 0, so that P (Ac
R) → 0. As for the second term on the right hand side

of (D.15), ∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[sGil (x, t, h)Dil − E(sGilDil)]

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[s(1)il(x, t, h)Dil − E(s(1)ilDil)]

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[s(2)il(x, t, h)Dil − E(s(2)ilDil)]

∣∣∣∣∣ , (D.17)

where sGil = s(1)il + s(2)il as described in (D.13). Similar to (D.10) in the proof
of Proposition 3.2 one can show that the second term in the right hand side
of (D.17) is bounded, i.e.,∣∣∣∣∣ 1n

n∑
i=1

1

ni

ni∑
l=1

[s(2)il(x, t, h)Dil − E(s(2)ilDil)]

∣∣∣∣∣ = O
(
δ(nh)−1/2

)
. (D.18)

Also, we can bound the first term on the right hand side of (D.16) by∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[s(1)il(x, t, h)Dil − E(s(1)ilDil)]

∣∣∣∣∣
≤||Σ−1

20 (t)(x− μX(t))||E×
p∑

j=1

∣∣∣∣∣ 1n
ni∑
l=1

n−1
i (X

(j)
il − μX(t)(j))Dil(ω, x, t)− E((X

(j)
il − μX(t)(j))Dil(ω, x, t))

∣∣∣∣∣
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+

∣∣∣∣∣ 1n
ni∑
l=1

n−1
i Dil(ω, x, t)− E(Dil(ω, x, t))

∣∣∣∣∣ ,
where (X

(j)
il μX(t)(j) denote the jth component of Xil and μX(t) respectively.

Following a similar line of argument for finding a class of envelope functions to
control the covering number required in the entropy integral in Assumption (U3)
one can show that,

E

(
sup

||x||≤M

sup
d(ω,g̃⊕(x,t))<δ

∣∣∣∣∣ 1n
n∑

i=1

1

ni

ni∑
l=1

[s(1)il(x, t, h)Dil − E(s(1)ilDil)]

∣∣∣∣∣
)

= O
(
δγ(nh)−1/2

)
, (D.19)

for any γ < 1. Thus combining (D.16), (D.18), and (D.19) in (D.15) we have,
for each given t ∈ T ,

E

(
1 (AR) sup

||x||≤M

sup
d(ω,g̃⊕(x,t))<δ

‖Vn(ω)− Vn(g̃⊕(x, t))‖
)

≤ bδγ(nh)−1/2,

for some constant b = b(γ). For α > 2 as defined in Assumption (U4) such that
for any α′ > α and γ = 1+ α− α′, following the point-wise rate argument, one
can show that

sup
||x||≤M

d(ĝ⊕(x, t), g̃⊕(x, t) = OP

(
(nh)

− 1
2(α′−1) ,

)
= .OP

(
(nh)−1/2+δ

)
,

for any δ > 0. Finally, the bias term introduced by changing the target from m⊕
in (2.1)to g⊕ in (4.1) can be shown as O(h2) uniformly over ||x||E ≤ M for each
given t ∈ T , using the uniform equi-continuity of g̃⊕ and the total boundedness
of the space Ω. Combining these the result follows.

Appendix E: Additional figures

We present here some additional figures that are referred to in the main paper in
the context of simulation studies and real data applications in Sections 5 and 6
respectively.

Additional figure from simulation studies in Section 5

The performance of the proposed partially global concurrent object regression
(CORE) model is compared to the global Fréchet regression (GFR) method
from [44]. In the latter, the nested structure of the predictor space (T,X(T ))
is ignored and thus T ∈ R and X ∈ R

p are treated as a p + 1 dimensional
predictor input for the model. The data generating mechanism is as described
in Setting I of Section 5.1, with the each component of the predictor process
X(·) ∈ R

p assumed to be uncorrelated. The proposed partially global CORE
method outperforms GFR in all cases.
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Fig 16. Figure shows the comparative performance of the proposed partially global concurrent
object regression (CORE) method to that of global Fréchet regression (GFR) with increasing
the predictor dimension p for distributional object responses. The sample sizes are kept fixed
at n = 1000 and dense and sparse designs are considered with ni = 5 and ni = 20 respectively.

Fig 17. Estimated correlation matrix for the CN subjects fitted locally using nonparametric
CORE in (3.8) illustrating the dependence of functional connectivity on total cognitive score
which gets modulated by age. The arrangement of the panels are the same as that of Figure 4.
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Fig 18. Estimated correlation matrix for the CN subjects fitted locally using partially global
CORE in (4.1) illustrating the dependence of functional connectivity on total cognitive score
which gets modulated by age. The arrangement of the panels are the same as that of Figure 4.

Additional figures from real-data applications in Section 6

The following figures show additional illustrations for the data application for
brain connectivity in Alzheimer’s disease in Section 6.1, where pairwise connec-
tivity correlation matrices are considered as random object responses varying
with age, and the predictors taken were age and total cognitive score changing
with age.

Figure 17 displays the connectivity correlation matrices for the CN subjects,
estimated using the nonparametric CORE method locally over a range of dif-
ferent output points. This elicits a the regression relationship between the func-
tional connectivity matrix and the total cognitive scores in Section 6.1, which is
further altered by age. Quite contrary to the case of the AD subjects ( 4), here
we observe a prominence of positive correlations between the brain parcellation
throughout, in terms of stronger magnitude and higher number. This might well
be indicative of a better inter-hub functional connectivity in the CN subjects.
Over increasing age we observe a higher value for the total cognitive score which
can be associated with a weaker inter-hub connectivity overall. The reduction
in Negative Functional Correlation (NFC) for CN subjects is still noted but
the evolution is not so drastic over age. In addition, the estimated correlation
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Fig 19. The observed time-varying age at death density functions over the years for males
in Australia, Finland, U.S. and Portugal, clockwise in the four panels, starting at the upper
left.

matrices for the CN subjects exhibit specific patterns of dependency over the
connectivity hubs, which, in case of the estimated correlation matrices for the
AD subjects is not as discernible. A further application of the partially global
model gives evidence along the same line as the nonparametric CORE model
(Figure 18). However, the in-sample goodness of fit measured by the integrated
deviance statistic (see (6.2) in Section 6.1) for the former (0.0056) is marginally
better than the latter (0.0071), accounting for a better performance of the par-
tially global Model.

The following figure is an additional illustration for the real data application
for impact of GDP on human mortality, where a sample of age-at-death densities
were treated as the distributional object responses varying with calendar years
for 22 countries and GDP data of each country, for changing calendar year were
considered as predictors. The figure shows the 3D plots for the observed age-at-
death distributions, represented as densities, over the years for four countries-
Australia, Finland, Portugal and the U.S., as is referred to in the main paper
in Section 6.2.
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