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Abstract

We study sequential decision-making in batched nonparametric contextual ban-1

dits, where actions are selected over a finite horizon divided into a small number2

of batches. Motivated by constraints in domains such as medicine and market-3

ing—where online feedback is limited—we propose a nonparametric algorithm that4

combines adaptive k-nearest neighbor (k-NN) regression with the upper confidence5

bound (UCB) principle. Our method, BaNk-UCB, is fully nonparametric, adapts6

to the context dimension, and is simple to implement. Unlike prior work relying7

on parametric or binning-based estimators, BaNk-UCB uses local geometry to esti-8

mate rewards and adaptively balances exploration and exploitation. We provide9

near-optimal regret guarantees under standard Lipschitz smoothness and margin10

assumptions, using a theoretically motivated batch schedule that balances regret11

across batches and achieves minimax-optimal rates. Empirical evaluations on syn-12

thetic and real-world datasets demonstrate that BaNk-UCB consistently outperforms13

binning-based baselines.14

1 Introduction15

Many real-world decision-making problems involve using feedback from past interactions to improve16

future outcomes—a hallmark of adaptive sequential learning. Contextual bandits are a standard17

framework for modeling these problems, especially in personalized decision-making, where side18

information helps tailor actions to individuals [Tewari and Murphy, 2017, Li et al., 2010]. In this19

framework, a learner observes a context, selects an action, and receives a reward, aiming to maximize20

cumulative reward over time through adaptive policy updates.21

However, in many practical applications—such as clinical trials [Kim et al., 2011, Lai et al., 1983]22

and marketing campaigns [Schwartz et al., 2017, Mao et al., 2018]—adaptivity is limited due to23

logistical or cost constraints. Decisions are made in batches, and feedback is only received at the24

end of each batch. This structure permits limited adaptation and renders traditional online bandit25

algorithms ineffective, motivating new methods tailored for low-adaptivity regimes with few batches.26

While parametric bandits have been extended to the batched setting, they often rely on strong modeling27

assumptions. Nonparametric models offer greater flexibility and robustness [Rigollet and Zeevi, 2010,28

Qian and Yang, 2016, Reeve et al., 2018, Zhou et al., 2020], but their use in batched bandits remains29

limited. Existing nonparametric batched bandit methods, such as BaSEDB [Jiang and Ma, 2025],30

rely on partitioning the context space into bins and treating each bin as a local static bandit instance.31

While effective when contexts are uniformly distributed, such binning-based approaches can struggle32

in the presence of non-uniform or heterogeneous context distributions. In particular, low-density33

regions may receive few or no samples, leading to poor reward estimation and imbalanced exploration34

across the space. These limitations highlight the need for methods that adapt to the local geometry35

and data distribution, rather than imposing a fixed spatial discretization.36

To address this gap, we propose Batched Nonparametric k-nearest neighbor-Upper Confidence Bound37
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(BaNk-UCB), a nonparametric algorithm for batched contextual bandits that combines adaptive k-38

nearest neighbor regression with UCB-based exploration. BaNk-UCB adapts neighborhood radii39

to local data density, eliminating the need for manual bin design. Under Lipschitz continuity and40

margin conditions, we prove minimax-optimal regret rates up to logarithmic factors. Empirical results41

on synthetic and real data show consistent improvements over binning-based methods. Our main42

contributions are:43

• We propose BaNk-UCB, a novel nonparametric algorithm for batched contextual bandits44

that integrates adaptive k-nearest neighbor (k-NN) regression with upper confidence bound45

(UCB) exploration. The method is simple to implement and avoids biases introduced by46

coarse partitioning of the context space.47

• We design a theoretically grounded batch schedule and establish minimax-optimal regret48

bounds under standard Lipschitz smoothness and margin conditions. This is, to our knowl-49

edge, the first such result for a k-NN-based method in the batched setting.50

• We highlight how BaNk-UCB automatically adapts to the local geometry of the context dis-51

tribution without requiring explicit modeling assumption, due to the adaptive neighborhood52

choice in k-NN regression.53

• We demonstrate through extensive experiments on both synthetic and real-world datasets54

that BaNk-UCB consistently outperforms binning-based baselines, particularly in high-55

dimensional or heterogeneous contexts.56

1.1 Related Work57

Batched contextual bandits have received growing attention due to their relevance in settings with58

limited adaptivity, such as clinical trials and campaign-based interventions [Perchet et al., 2016,59

Gao et al., 2019]. Prior work has explored both non-contextual bandits with fixed or adaptive batch60

schedules [Esfandiari et al., 2021, Kalkanli and Ozgur, 2021, Jin et al., 2021], and contextual bandits,61

often under parametric assumptions. In particular, linear [Han et al., 2020] and generalized linear62

models [Ren et al., 2022] have been popular due to their analytical tractability, though such models63

may fail to generalize when the reward function is nonlinear or misspecified.64

Nonparametric bandits have been extensively studied in the fully sequential setting. Early work by65

Yang and Zhu [2002] employed ϵ-greedy strategies with nonparametric reward estimation. Subsequent66

methods include the Adaptively Binned Successive Elimination (ABSE) algorithm [Rigollet and67

Zeevi, 2010, Perchet and Rigollet, 2013], which partitions the context space adaptively and uses68

elimination-based strategies [Even-Dar et al., 2006]. Other approaches include kernel regression69

methods [Qian and Yang, 2016, Hu et al., 2020], nearest neighbor algorithms [Reeve et al., 2018,70

Zhao et al., 2024], and Gaussian process or kernelized models [Krause and Ong, 2011, Valko et al.,71

2013, Arya and Sriperumbudur, 2023].72

In the batched nonparametric setting, Jiang and Ma [2025] introduced BaSEDB, a batched variant of73

ABSE with dynamic binning and minimax-optimal regret guarantees. Other recent directions include74

neural network-based estimators [Gu et al., 2024], Lipschitz-constrained models [Feng et al., 2022],75

and semi-parametric frameworks [Arya and Song, 2025], though each makes different structural76

assumptions.77

Our work departs from these approaches by employing adaptive k-nearest neighbor regression to78

estimate both reward functions and confidence bounds under batch constraints. Unlike binning-based79

methods, BaNk-UCB avoids discretization and instead adapts to the local geometry of the context80

distribution through data-driven neighborhood selection. To our knowledge, this is the first batched81

nonparametric algorithm based on k-NN to achieve near-optimal regret guarantees. Empirically, we82

show that BaNk-UCB outperforms BaSEDB, particularly in heterogeneous context spaces, leveraging83

the well-known ability of k-NN to adapt to local intrinsic dimension [Kpotufe, 2011].84

2 Setup85

We consider a batched contextual bandit problem over a finite time horizon T , where decisions86

are grouped into M batches to reflect limited adaptivity. At each round t ∈ {1, . . . , T}, a context87

Xt ∈ X ⊂ Rd is observed, and the learner selects an action at ∈ A = {1, . . . ,K}. The learner88

selects an action at ∈ A based on Xt and receives a noisy reward:89

Yt = fat
(Xt) + ϵt, (1)

where fa(x) is an unknown mean reward function for a ∈ A and x ∈ X . The model noise is given90

by ϵt. We make the following assumptions on the noise and context space.91
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Assumption 1 (Sub-Gaussian noise). We assume that the noise terms {ϵt}Tt=1 are independent and92

σ2-sub-Gaussian; that is, for all λ ∈ R and all t,93

E
[
eλϵt

]
≤ e

1
2λ

2σ2

. (2)

Assumption 2 (Bounded context density). The context vectors Xt are drawn i.i.d. from a distribution94

with density pX , which is supported on X ⊂ Rd. We assume that pX(x) ≥ c for some c > 0.95

Note that, while many nonparametric bandit works assume the context space to be a cube such as96

[0, 1]d, we allow for arbitrary bounded domains with densities bounded away from zero—a setting97

that accommodates more general geometry in X .98

A policy πt : X → A for t = 1, . . . , T determines an action at ∈ A at t. Based on the chosen99

action at, a reward Yt is obtained. In the sequential setting without batch constraints, the policy100

πt can depend on all the observations (Xs, Ys) for s < t. In contrast, in a batched setting with M101

batches, where 0 = t0 < t1 < · · · < tM−1 < tM = T , for t ∈ [ti, ti+1), the policy πt can depend102

on observations from the previous batches, but not on any observations within the same batch. In103

other words, policy updates can occur only at the predetermined batch boundaries t1, . . . , tM . This104

reflects the constraint that feedback is only revealed at the end of each batch.105

Let G = {t0, t1, . . . , tM} represent a partition of time {0, 1, . . . , T} into M intervals, and π =106

(πt)
T
t=1 be the sequence of policies applied at each time step. The overarching objective of the107

decision-maker is to devise an M -batch policy (G, π) that minimizes the expected cumulative regret,108

defined asRT (π) = E[RT (π)], where109

RT (π) =

T∑
t=1

f∗(Xt)− f(πt(Xt))(Xt) (3)

where f∗(x) = maxa∈A fa(x) is the expected reward from the optimal choice of arms given a context110

x. The cumulative regret serves as a pivotal metric, quantifying the difference between the cumulative111

reward attained by π and that achieved by an optimal policy, assuming perfect foreknowledge of the112

optimal action at each time step.113

We make the following assumptions on the reward functions.114

Assumption 3 (Lipschitz Smoothness). We assume that the link function fa : Rd → R for each arm115

is Lipschitz smooth, that is, there exists L > 0 such that for a ∈ A,116

|fa(x)− fa(x
′)| ≤ L∥x− x′∥,

holds for x, x′ ∈ X .117

Assumption 4 (Margin). For some 0 < α ≤ d and for all a ∈ A, there exists a δ0 ∈ (0, 1) and118

Dα > 0 such that119

PX(0 < f∗(X)− fa(X) ≤ δ) ≤ Dαδ
α,

holds for all δ ∈ [0, δ0].120

The margin condition implies that the regions where the reward gap is small, i.e., where it is hard to121

distinguish the best arm are not too large. The exponent α controls the rate at which the measure of122

such regions shrinks as δ → 0. When α is small, suboptimal arms can be frequently indistinguishable123

from the best arm, leading to slower learning; larger α implies faster decay and enables faster124

convergence.125

Remark 1. Throughout this paper, we assume that α ≤ 1, because in the α > 1 regime, the context126

information becomes irrelevant as one arm dominates the other (e.g., see Proposition 2.1 of Rigollet127

and Zeevi [2010]).128

The margin condition plays a crucial role in determining the minimax rate of regret in nonparametric129

bandit problems, similar to its role in classification [Mammen and Tsybakov, 1999, Tsybakov, 2004].130

Notation: We use ∥ · ∥ to denote the Euclidean norm in Rd. We denote B(x, r) to denote a131

Euclidean ball with center x ∈ Rd and radius r. We denote ≲ and ≳ to denote inequalities upto132

constants. The notation f(n) = Θ(g(n)) indicates an asymptotic tight bound. Formally, there exist133

positive constants c1, c2 and n0 such that for all n ≥ n0, c1 · g(n) ≤ f(n) ≤ c2 · g(n). The notation134

Õ(g(n)) denotes an asymptotic upper bound up to logarithmic factors. For a, b ∈ R, a ∨ b denotes135

the maximum of a and b, and a ∧ b denotes minimum of a and b. For any batch m, let Ftm be the136

filtration encoding the history up to batch m.137
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3 Batched Nonparametric k-Nearest Neighbor-UCB (BaNk-UCB) Algorithm138

Recall that in the batched bandits setting, the decision at time t in batch m only depends on the139

information observed up to the end of the (m − 1)th batch. We propose BaNk-UCB (Batched140

Nonparametric k-Nearest Neighbors Upper Confidence Bound) detailed in Algorithm 1. This is141

based on an adaptive k-nearest-neighbor policy that tunes k according to the local margin (sub-142

optimality gap) and context density. Let us first define some useful notation. For x ∈ X and some143

fixed k ≤ tm−1, let Ntm−1,k(x, a) be the set of k nearest neighbors of x where arm a was chosen,144

i.e.,145

Ntm−1,k(x, a) := {s ≤ tm−1 : as = a and Xs is among the k nearest to x}. (4)

For simplicity, we denote Nt,k(x, a) ≡ Ntm−1,k(x, a) for all times t within the batch interval146

(tm−1, tm]. Then we define for t ∈ (tm−1, tm],147

da,t,k(x) = max
s∈Ntm−1,k(x,a)

∥Xs − x∥, (5)

to be the radius of the k-NN ball around x for arm a. We adaptively select the number of neighbors,148

denoted kt,a(x), based solely on observations available up to the end of batch (m−1) and specifically149

associated with arm a. This kt,a is then used in the proposed BaNk-UCB algorithm as described in150

Algorithm 1:151

kt,a(x) = max

{
j | Lda,t,j(x) ≤

ln tm−1

j

}
. (6)

Note that L is the constant from the Lipschitz smoothness assumption (Assumption 3). The left hand152

side thus controls the bias in the estimation of fa and the right-hand side controls the variance in the153

estimation, i.e., it ensures that we use large k if previous samples are relatively dense around Xt, and154

vice versa. The adaptive selection of k in (6) requires that the nearest observed context be sufficiently155

close. Specifically, we enforce Lda,t,1(Xt) ≤
√

ln tm−1; otherwise, reliable estimation is not156

feasible, and we conservatively set the UCB to infinity: f̂a,t(x) =∞. Otherwise, for t ∈ (tm−1, tm],157

we calculate the upper confidence bound (UCB) as follows:158

f̂a,t(x) =
1

ka,t(x)

∑
s∈Ntm−1

(x,a)

Ys + ξa,t(x) + Lda,t(x), (7)

where da,t is as defined in (5) and ξa,t is defined as:159

ξa,t(x) =

√
2σ2

ka,t(x)
ln (dt2d+3

m−1 |A|). (8)

Algorithm 1 BaNk-UCB for Batched Nonparametric Bandits
1: Input: Partition t0, t1, . . . , tM , with t0 = 0 and tM = T .
2: for m = 1, . . . ,M do
3: for t = tm−1 + 1, . . . , tm do
4: Receive context Xt;
5: for a ∈ A do
6: if Lda,t,1(Xt) >

√
ln tm−1 then

7: Set f̂a,t(Xt)← +∞;
8: else
9: Compute kt,a(Xt) according to (6);

10: Compute f̂a,t(Xt) according to (7);
11: end if
12: end for
13: Choose action at = argmaxa∈A f̂a,t(Xt);
14: Pull arm at;
15: end for
16: Observe rewards {Yt, t ∈ tm−1 + 1, . . . , tm};
17: end for
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Here, ξa,t(x) provides a high-probability bound for stochastic noise of the nearest-neighbor averaging,160

while Lda,t(x) controls the estimation bias from finite-sample approximation. Both terms depend161

explicitly on prior-batch data, highlighting the critical role batch design plays in balancing estimation162

accuracy and cumulative regret. Finally, the algorithm selects arm at with the maximum UCB value,163

at = arg maxa∈Af̂a,t(Xt). (9)

Note, that for (6) to hold in the initial samples, we use log(T )/|A| samples for pure exploration in164

the beginning.165

Remark 2. The adaptive choice of ka,t(x) in (6) simultaneously balances the bias-variance and166

exploration-exploitation trade-offs in estimating fa. Specifically, the bias-variance trade-off is167

managed by selecting a larger k when previously observed contexts are densely sampled around Xt,168

thereby reducing variance, and choosing a smaller k otherwise, controlling bias. Moreover, due to169

the Lipschitz smoothness assumption, contexts with larger optimality gaps (f∗(x)− fa(x)) naturally170

correspond to larger radii da,t,j(x), leading to smaller chosen values of k and promoting targeted171

exploration in regions with high uncertainty.172

4 Minimax Analysis on the Expected Regret173

In this section, we demonstrate that the BaNk-UCB algorithm achieves a minimax optimal rate on the174

expected cumulative regret under an appropriately designed partition of grid points. Specifically, the175

rate matches known minimax lower bounds up to logarithmic factors. First we describe the choice of176

the batch grid points and then state the upper and lower bounds on the expected regret.177

4.1 Batch sizes178

The choice of batch sizes plays a crucial role in the performance of the batched bandit algorithms.179

We partition the time horizon into M batches, denoted by grid points G = {t1, t2, . . . , tM}, with180

t0 = 0. The special case M = T recovers the fully sequential bandit setting, where policy updates181

occur at every step. Conversely, smaller M imposes fewer policy updates, introducing a trade-off182

between computational/operational complexity and regret accumulation. A key challenge in the183

batched setting is selecting the grid G. Intuitively, to minimize total regret, no single batch should184

dominate the cumulative error, suggesting that the grid should balance regret across batches. If one185

batch incurs higher regret, reassigning time steps can improve the overall rate. This motivates a grid186

choice that equalizes regret across batches, up to order in T and d, as we formalize below. We choose:187

t1 = ad, tm = ⌊atγm−1⌋, (10)

where γ = 1+α
2+d and a = Θ(T

1−γ

1−γM ) is chosen so that tM = T .188

4.2 Regret bounds189

In order to establish the regret rates, we first define the batch-wise expected sample density, motivated190

by the formulation of Zhao et al. [2024]. Let p(m)
a : X → R is defined such that for all A ⊆ X ,191

E

 tm∑
t=tm−1

1(Xt ∈ A, at = a)

 =

∫
A

p(m)
a (x)dx. (11)

First let’s consider the cumulative regret relate it to the batch-wise expected sample density.192

Lemma 1. The expected cumulative regret in (3) is given by RT (π) =
∑

a∈A
∑M

m=1 R
(m)
a (π),193

where R
(m)
a (π) is defined as:194

R(m)
a (π) =

∫
X
(f∗(x)− fa(x))p

(m)
a (x)dx. (12)
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Proof. Consider,195

RT (π) = E

[
T∑

t=1

(f∗(Xt)− fat
(Xt))

]

= E

 M∑
m=1

tm∑
t=tm−1

(f∗(Xt)− fat
(Xt))


=
∑
a∈A

M∑
m=1

E

 tm∑
t=tm−1

(f∗(Xt)− fat
(Xt))1(at = a)


=
∑
a∈A

M∑
m=1

∫
X
(f∗(Xt)− fat

(Xt)) p
(m)
a (x)dx.

196

Using the fact that the batch sizes are chosen to control for the regret to be balanced across batches,197

the idea is to construct an upper bound on the batch-wise arm specific regret, R(m)
a (π). Then, using198

Lemma 1, we can bound the expected cumulative regret.199

Theorem 1. Under Assumptions 1–4, and with the batch sizes as defined in (10) in Section 4.1, the200

regret of the proposed BaNk-UCB algorithm (π) is bounded by,201

RT (π) ≲ |A|MT
1−γ

1−γM (lnT )
γ
, (13)

where γ = 1+α
2+d .202

Proof Sketch for Theorem 1. For ϵ > 0, we split R(m)
a into two terms:203

R(m)
a =

∫
X
(f∗(x)− fa(x))p

(m)
a (x)1(f∗(x)− fa(x) > ϵ)dx

+

∫
X
(f∗(x)− fa(x))p

(m)
a (x)1(f∗(x)− fa(x) ≤ ϵ)dx. (14)

The idea is to bound these two terms separately, where the second one can be bounded using the204

margin assumption (i.e., Assumption 4). The ϵ is determined theoretically based on the bound on205

R
(m)
a . From Lemmas 8 and 10 in the Appendix B, we get that:206 ∫

X
(f∗(x)− fa(x))p

(m)
a (x)1 (f∗(x)− fa(x) > ϵ) dx ≲ ϵα−d−1 ln tm−1 + tmϵ1+α. (15)

Furthermore, we can bound the second term in (14) by207 ∫
X
(f∗(x)− fa(x))p

(m)
a (x)1 (f∗(x)− fa(x) ≤ ϵ) dx

(†)
≤ tmϵ

∫
pX(x)1 (f∗(x)− fa(x) ≤ ϵ) dx

(‡)
≲ tmϵ1+α, (16)

where (†) follows from Lemma 2 and (‡) follows from the Margin condition. Now combining (15)208

and (16), we get from (14):209

R(m)
a ≲ ϵα−d−1 ln tm−1 + tmϵ1+α (17)

By the choice of our batch end points tm = ⌊atγm−1⌋, then it is easy to see using a geometric sum in210

the exponent, tm = Θ(T
1−γm

1−γM ) with γ = 1+α
2+d . Now, balancing the two terms in (17) and solving for211

ϵ, we get ϵ = [t−1
m−1 ln tm−1]

1
2+d . Therefore, we have:212

R(m)
a ≲ tm[t−1

m−1 ln tm−1]
1+α
2+d ≲ T

1−γm

1−γM · T−
(

1−γm−1

1−γM

)
( 1+α

2+d ) · (ln tm−1)
1+α
2+d = T

1−γ

1−γM (ln tm−1)
γ
.

(18)
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Now, using Lemma 1,213

RT (π) =
∑
a∈A

M∑
m=1

R(m)
a (π)

≲
∑
a∈A

M∑
m=1

T
1−γ

1−γM (ln tm−1)
γ

≲ |A|MT
1−γ

1−γM (lnT )
γ
.

214

Next, we establish minimax lower bounds on the regret achievable by any M-batch policy (G, π)215

and show that it matches the upper bound in Theorem 1 up to logarithm factors. While our lower216

bound result matches that of Jiang and Ma [2025], we include a complete proof in the Appendix C for217

completeness. Notably, our hypothesis construction and proof technique differ slightly from theirs.218

Theorem 2 (Minimax lower bound for nonparametric batched bandits). Let F(L,α) denote the class219

of functions that satisfy Lipschitz smoothness (Assumption 3) with Lipschitz constant L and margin220

condition (Assumption 4). For any M -batch policy π deployed over T rounds, the minimax expected221

cumulative regret satisfies:222

inf
π

sup
f1,f2∈F(L,α)

RT (π) ≳ T
1−γ

1−γM , where γ =
α+ 1

2 + d
.

Theorem 2 characterizes the fundamental difficulty of learning within this class of problems and shows223

that our BaNk-UCB algorithm’s upper bound matches this minimax lower bound up to logarithmic224

factors. Recall that,225

RT (π) = E[
T∑

t=1

(f∗(Xt)− fat
(Xt)]. (19)

We define the inferior sampling rate as the expected number of steps with sub-optimal actions:226

ST (π) = E[
T∑

t=1

1(fat(Xt) < f∗(Xt))] (20)

Lemma 11 characterizes the relationship between S and R and we use that in establishing a lower-227

bound on the batch-wise regret for any policy π in batched bandit setting.228

Remark 3. Note that, when M ≳ ln(lnT ) and the number of arms |A| ≲ lnT , the cumulative regret229

simplifies to RT (π) = Õ(T 1−γ), recovering the known minimax optimal rate for fully sequential230

(non-batched) nonparametric bandits [Perchet and Rigollet, 2013]. This condition implies that,231

surprisingly, only a relatively modest increase in the number of batches (log-logarithmic in the232

horizon T ) is sufficient to achieve the fully sequential optimal rate. Additionally, the mild logarithmic233

restriction on the number of actions |A| reflects practical scenarios where the action set is moderately234

large but not excessively growing with T , highlighting the efficiency of the BaNk-UCB algorithm in235

nearly matching fully adaptive performance despite batching constraints.236

5 Experiments237

In this section, we present numerical simulations and real-data experiments to illustrate the perfor-238

mance of the proposed Batched Nonparametric k-NN UCB algorithm (BaNk-UCB) in comparison239

to the nonparametric analogue: Batched Successive Elimination with Dynamic Binning (BaSEDB)240

algorithm of Jiang and Ma [2025].241

5.1 Simulated Data242

We consider the following simulation settings:243

Setting 1: Motivated by the construction of the function class for the regret lower bound, we244

make the following choices for f1 and f2: f1(x) =
∑D

j=1 vjhI{x ∈ Bj}, x ∈ X , and f2(x) = 0,245

where vj ∈ {−1, 1} for j = 1, . . . , D, Bj is a ball centered at cj with radius r. In Figure 1, we set246

X = [−1, 1]d (with a uniform PX ) with d = 2, r = 0.6, D = 6, with randomly generated centers247
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for Bj and Rademacher random variables vj , j = 1, . . . , 6. Note that, Setting 1 is derived from the248

regret lower bound construction and represents a worst-case instance for nonparametric bandits under249

margin conditions.250

Setting 2: As illustrated in Figure 1 consider the following choice of mean reward functions:251

f1(x) = ∥x∥2 and f2(x) = 0.5− ∥x∥2, where X is sampled uniformly from [−1, 1]d, with d = 2.252

We set T = 10000, L = 1 for the Lipschitz constant in Assumption 3. We fix the number of batches
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Figure 1: Top row (left to right): Reward functions for the two arms in Setting 1 and 2, respectively.
Bottom row: Cumulative regret comparison for BaSEDB and BaNk-UCB algorithms over 30 runs.

253
to M = 5 to balance between frequent updates and computational efficiency, but the results remain254

consistent across different choices of M . For the BaSEDB algorithm, we follow the specifications255

described in Jiang and Ma [2025] for choosing grid points and bin-widths. For our proposed BaNk-256

UCB algorithm, we choose the same batch grid for a fair comparison. In Figure 1, we plot the257

cumulative regret averaged over 30 independent runs. In order to present an empirical assessment of258

the variability inherent in our simulations, the shaded regions represent empirical confidence intervals259

computed as ±1.96 times the standard error across these runs. The vertical dotted blue lines denote260

the grid choices for the batches.261

BaNk-UCB consistently outperforms BaSEDB across all experimental settings. Although our batch262

sizes were selected based on empirical performance, they align closely with the theoretically motivated263

schedule in Section 4.1. Importantly, we find that performance is robust to the specific number of264

batches, as long as batch endpoints follow the prescribed growth pattern. This suggests that BaNk-UCB265

does not require precise tuning of the batch schedule to perform well.266

In Appendix C.1, we extend the comparison to higher-dimensional contexts (d = 3, 4, 5), where both267

methods degrade in performance, yet BaNk-UCB maintains a consistent advantage over BaSEDB. A key268

practical benefit of BaNk-UCB is its minimal tuning overhead. Unlike binning-based algorithms such269

as BaSEDB, which depend on careful calibration of bin widths, refinement rates, and arm elimination270

thresholds—often requiring knowledge of problem-specific parameters—BaNk-UCB relies on a fully271

data-driven nearest neighbor strategy. Its adaptively chosen k automatically balances bias and variance272

based on local data density, without needing explicit smoothness or margin parameters. This makes273

BaNk-UCB both more robust to misspecification and easier to implement in practice.274

8



5.2 Real Data275

We evaluate the performance of BaNk-UCB and BaSEDB algorithm on three publicly available276

classification datasets: (a) Rice [Cammeo and Osmancik, 2020], consisting of 3810 samples with277

7 morphological features used to classify two rice varieties; (b) Occupancy Detection [Candanedo278

and Feldheim, 2016], with 8143 samples and 5 environmental sensor features used to predict room279

occupancy; and (c) EEG Eye State [Biermann, 2014], with 14980 samples and 14 EEG measurements280

used to classify eye state. In all cases, we treat the true label as the optimal action and assign a binary281

reward of 1 if the selected action matches the label, and 0 otherwise. We simulate a contextual bandit282

setting where the context xt is observed, the learner selects an arm at ∈ {1, . . . ,K}, and observes283

only the reward for the chosen arm. We set the number of arms K equal to the number of classes284

(which is K = 2 for the three datasets considered) and choose the number of batches to be 3, 4, and285

6 respectively, based on dataset size. The number of batches was selected based on the total number286

of samples to ensure reasonable granularity while maintaining batch sizes that approximately align287

with our theoretically motivated geometric schedule.288
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Figure 2: Rolling average fraction of incorrect decisions across three real datasets. BaNk-UCB
achieves lower error and faster learning than BaSEDB.

The rolling fraction of incorrect decisions is computed using a windowed average over 30 independent289

random permutations of each dataset. In Figure 2, we plot the rolling fraction of incorrect decisions290

with shaded regions (±1.96 standard errors) for uncertainty quantification as a function of the number291

of observed instances. BaNk-UCB consistently outperforms BaSEDB across all datasets. For the EEG292

dataset, which has the highest context dimensionality, BaNk-UCB exhibits faster convergence and con-293

sistently lower error, suggesting its advantage in capturing local structure in high-dimensional spaces.294

Batch sizes are chosen according to theoretical guidelines and are identical for both algorithms.295

6 Conclusion296

We introduced BaNk-UCB, a nonparametric algorithm for batched contextual bandits that combines297

adaptive k-nearest neighbor regression with the UCB principle. Unlike binning-based methods,298

BaNk-UCB leverages the local geometry of the context space and naturally adapts to heterogeneous299

data distributions. We established near-optimal regret guarantees under standard Lipschitz smooth-300

ness and margin conditions and proposed a theoretically grounded batch grid that balances regret301

across batches. In addition to its theoretical robustness, BaNk-UCB is resilient to batch schedul-302

ing choices and requires minimal parameter tuning, making it suitable for practical deployment in303

real-world systems. Empirical evaluations on both synthetic and real-world classification datasets304

demonstrate that BaNk-UCB consistently outperforms existing nonparametric baselines, particularly305

in high-dimensional or irregular context spaces.306

While BaNk-UCB achieves minimax-optimal regret under standard conditions, it assumes a known307

Lipschitz constant, which influences the adaptive selection of neighborhood size in k-NN estimation.308

The algorithm also relies on batch schedules guided by theoretical principles, which may not always309

align with real-time operational constraints. Moreover, although k-NN performs well in moderate310

dimensions, its accuracy may deteriorate in very high-dimensional settings due to the curse of dimen-311

sionality. Addressing these limitations by developing adaptive strategies for estimating smoothness312

and margin parameters, or by integrating dimension reduction techniques, is a promising direction for313

future research. Additional extensions include eliminating extraneous logarithmic factors in regret314

bounds and generalizing the framework to infinite or structured action spaces.315
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A Appendix491

In this section, we provide the detailed proofs for the results in Theorem 1 and 2, respectively. First492

we present the supporting lemmas for establishing the upper bound for the expected regret in Section493

B, then in Section C we present the proof for the regret lower bound with supporting lemmas.494

B Proof for the Regret Upper Bound495

Recall, the batch-wise expected sample density, p(m)
a (x), from (11). In Lemma 2, we first construct496

an upper bound for p(m)
a (x) in terms of the context density pX(x).497

Lemma 2. The batch-wise expected sample density satisfies:498

p(m)
a (x) ≤ (tm − tm−1)pX(x),

for almost all x ∈ X .499

Proof. Note, since the event {Xt ∈ A} ⊆ {Xt ∈ A, at = a},500

E

 tm∑
t=tm−1

1(Xt ∈ A, at = a)

 ≤ (tm − tm−1)

∫
A

pX(x)dx. (21)

From (11) and (21), we get that,501 ∫
A

p(m)
a (x)dx ≤ (tm − tm−1)

∫
A

pX(x)dx,

for all A ∈ X . Therefore, p(m)
a (x) ≤ (tm − tm−1)pX(x) for almost all x ∈ X .502

Next, we build a concentration bound on the average model noise for the k-nearest neighbors around503

a point x. Here, we will use the sub-Gaussianity of noise (Assumption 1) and the fact that we only504

observe data until the last batch, i.e., for t ∈ [tm−1 + 1, tm], we can only utilize data until time tm−1505

for estimation.506

Lemma 3. Let Ntm−1,k(x, a) denote the set of k nearest neighbors among {Xi : i < tm−1, ai = a}.507

Then, for all x ∈ X , a ∈ A, and k ≥ 1, we have that,508

P

 sup
x,a,k

∣∣∣∣∣∣ 1√
k

∑
i∈Ntm−1,k(x,a)

ϵi

∣∣∣∣∣∣ > u

 ≤ dt2d+1
m−1 |A|e

− u2

2σ2 , (22)

where ϵi are independent sub-Gaussian noise terms with variance proxy σ2.509

Proof of Lemma 3. From Lemma 4 of Zhao et al. [2024], we have that of a fixed k:510

P

sup
x,a

∣∣∣∣∣∣ 1√
k

∑
i∈Ntm−1,k(x,a)

ϵi

∣∣∣∣∣∣ > u

 ≤ dt2dm−1|A|e
− u2

2σ2 . (23)

Then we apply a union bound over all k ≤ tm−1 to get,511

P

 sup
x,a,k

∣∣∣∣∣∣ 1√
k

∑
i∈Nt,k(x,a)

ϵi

∣∣∣∣∣∣ > u

 ≤ dt2d+1
m−1 |A|e

− u2

2σ2 .

512

Note, that Lemma 3 is for any batch m and we will use it to bound the batch-wise regret.513

Definition 1. Define the event Em as514

Em :=


∣∣∣∣∣∣ 1√

k

∑
i∈Ntm−1,k(x,a)

ϵi

∣∣∣∣∣∣ ≤
√
2σ2 ln(dt2d+3

m−1 |A|) ∀ x, a, k

 , (24)
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Then, from Lemma 3, it follows that P(Em) ≥ 1− 1/tm.515

Lemma 4. Under Em, we have that the following point-wise estimation error bound for x ∈ X and516

t ∈ [tm−1 + 1, tm]:517

fa(x) ≤ f̂a,t(x) ≤ fa(x) + 2ξa,t(x) + 2Lda,t(x), (25)

where ξa,t(x) and da,t(x) are as defined in (8) and (5), respectively.518

Proof. Observe that for t ∈ [tm−1 + 1, tm], under event Em and x ∈ X :519 ∣∣∣f̂a,t(x)− (fa(x) + ξa,t(x) + Lda,t(x))
∣∣∣ (26)

≤

∣∣∣∣∣∣ 1

ka,t(x)

∑
i∈Nt(x,a)

(Yi − fa(x))

∣∣∣∣∣∣
≤ 1

ka,t(x)

∑
i∈Nt(x,a)

(Yi − fa(Xi)) +
1

ka,t(x)

∑
i∈Nt(x,a)

(fa(Xi)− fa(x))

≤ ξa,t(x) + Lda,t(x), (27)

where the last line uses the definition of Em in (24) and the Lipschitz (smoothness) property (As-520

sumption 3) of fa.521

Quantities of interest: We define some important quantities of interest which are central to the522

proof. This includes two population quantities:523

ra(x) =
1

2L
√
C1

(f∗(x)− fa(x)), (28)

n(m)
a (x) =

C1 ln tm−1

(f∗(x)− fa(x))2
, (29)

in which524

C1 = max
{
4, 32σ2(2d+ 3 + log(Md|A|))

}
. (30)

The quantity n
(m)
a (x) can be interpreted as a local sample complexity proxy, capturing the number of525

samples required near x to estimate the reward function fa(x) with sufficient precision. Then, another526

quantity of interest is a data-dependent quantity that measures the total number of observations until527

time tm−1 corresponding to arm a in a radius r ball around x. For any x ∈ X , a ∈ A define,528

n(m)(x, a, r) :=

tm−1∑
t=1

1(∥Xt − x∥ < r, at = a). (31)

Next in Lemma 5, under the event Em, we show that the adaptive choice of ka,t from (6) in our k-NN529

estimator is in fact upper bounded by n
(m)
a (x). Then, in Lemma 6, we show that n(m)(x, a, r) ≤530

ka,t(x), which then leads to the relationship between n
(m)
a (x) and n(m)(x, a, r) in Lemma 7.531

Lemma 5. Under event Em for t ∈ [tm−1 + 1, tm],532

ka,t(x) ≤ n(m)
a (x).

Proof. We prove this by contradiction. Let ka,t(x) > n
(m)
a (x). By definition of ka,t in (6):533

Lda,t(x) = Lda,t,ka,t(x)(x) ≤

√
ln(tm−1)

ka,t(x)
≤
√

ln tm−1

n
(m)
a (x)

= 2Lra(x), (32)

From Lemma 4, under Em,534

f̂at,t(x) ≤ fat(x) + 2

√
2σ2

kat,t(x)
ln(dMt2d+3

m−1 |A|) + 2Lrat(x)

≤ fat(x) + 2

√
2σ2

n
(m)
at (x)

ln(dMt2d+3
m−1 |A|) + 2Lrat(x). (33)
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Since action at is selected at time t, from the proposed UCB algorithm (Algorithm 1), i.e., the choice535

of at = argmaxa∈A f̂a,t(Xt) and from Lemma 4,536

f̂at,t(x) ≥ f̂a∗(x),t(x) ≥ f∗(x). (34)

Combining (33) and (34) gives:537

2

√
2σ2

n
(m)
at (x)

ln(dt2d+3
m−1 |A|) + 2Lrat

(x) ≥ f∗(x)− fat
(x). (35)

We now derive an inequality that contradicts with (35). From (29) and (30),538

2

√
2σ2

n
(m)
at (x)

ln(dt2d+3
m−1 |A|) = 2

√
2σ2

C1 ln tm−1
ln(dt2d+3

m−1 |A|)(f∗(x)− fat(x))
2

≤ 1

2

√
ln(dt2d+3

m−1 |A|)
(2d+ 3 + ln(d|A|)) ln(tm−1)

(f∗(x)− fat
(x))

<
1

2
(f∗(x)− fat

(x)). (36)

From the definition of ra(x) in (28),539

2Lrat
(x) =

1√
C1

(f∗(x)− fat
(x)) ≤ 1

2
(f∗(x)− fat

(x)). (37)

From (36) and (37),540

2

√
2σ2

n
(m)
at (x)

ln(dt2d+3
m−1 |A|) + 2Lrat(x) < f∗(x)− fat(x). (38)

Note that (35) contradicts (38). Hence, the desired conclusion follows.541

Lemma 6. Under Em, let ra(x) ≥ 2LC1√
C1−2

and ka,t(x) ≳ lnT , then, we get542

n(m)(x, a, ra(x)) ≤ ka,t(x),

where ra(x) is as defined in (28), n(m)(x, a, ra(x)) defined in (31) and ka,t as defined in (6).543

Proof of Lemma 6. We also prove Lemma 6 by contradiction. If n(m)(x, a, ra(x)) > ka,t(x), let544

t = max{τ < tm−1 | ∥xτ − x∥ ≤ ra(x), Aτ = a}. (39)

be the last step falling in B(x, ra(x)) with action a. Then B(x, ra(x)) ⊆ B(Xt, 2ra(x)), and thus545

there are at least ka,t(x) points in B(Xt, 2ra(x)). Therefore, for any x ∈ X , by the definition of546

da,t(x), i.e., the distance of x to its kth nearest-neighbors in (5),547

da,t(x) < 2ra(x). (40)

Denote a∗(x) = argmaxa fa(x) as the best action at context x. Again, note that at = a is selected548

only if the UCB of action a is not less than the UCB of action a∗(x), i.e.,549

f̂a,t(Xt) ≥ f̂a∗(Xt),t(Xt). (41)

From Lemma 4,550

f̂a,t(Xt) ≤ fa(Xt) + 2ξa,t(Xt) + 2Lda,t(Xt), (42)

and551

f̂a∗(Xt),t(Xt) ≥ fa∗(Xt)(Xt) = f∗(Xt). (43)

From (41), (42), and (43),552

fa(Xt) + 2ξa,t(Xt) + 2Lda,t(Xt) ≥ f∗(Xt). (44)
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which yields,553

da,t(Xt) ≥
f∗(Xt)− fa(Xt)− 2ξa,t(Xt)

2L

≥
f∗(Xt)− fa(Xt)− 2

√
2σ2 ln (dMT 2d+3|A|)

ka,t(x)

2L

≥
f∗(Xt)− fa(Xt)− 2

√
2σ2 ln (dMT 2d+3|A|)

lnT

2L

=
√
C1ra(Xt)−

1

L

√
2σ2 ln (dMT 2d+3|A|)

lnT

≥
√
C1ra(Xt)−

√
C1

L
≥ 2ra(Xt), (45)

using the fact that ra(x) ≥ 2LC1√
C1−2

and ka,t(x) ≳ lnT . Note that (45) contradicts (40). Therefore554

n(m)(x, a, ra(x)) ≤ ka,t(x). That completes the proof of Lemma 6.555

Lemma 7. For na(x) defined in (29) and n(m)(x, a, r) as defined in (31), under Em,556

n(m)(x, a, ra(x)) ≤ n(m)
a (x).

Proof. Combining the results of Lemma 5 and 6 proves Lemma 7.557

Bounding the batch-wise regret R
(m)
a : From Lemma 7 and from Lemma 3, we know that558

P(Ecm) ≤ 1/tm and n(m)(x, a, ra(x)) < tm on Em gives:559

E
[
n(m)(x, a, ra(x)) | Ftm−1

]
≤ P(Em|Ftm−1

)E
[
n(m)(x, a, ra(x)) | Em,Ftm−1

]
+ P(Ecm|Ftm−1

)E
[
n(m)(x, a, ra(x)) | Ecm,Ftm−1

]
≤ n(m)

a (x) + 1. (46)

From the definition of p(m)
a in (11),560 ∫

B(x,ra(x))

p(m)
a (u)du ≤ n(m)

a (x) + 1. (47)

Recall R(m)
a from (12). We first bound R

(m)
a for a given m to get a bound on the expected regret561

using Lemma 1. To bound R
(m)
a , we introduce a new random variable Z follow a distribution with562

probability density function (pdf) ϕ:563

ϕ(z) =
1

CZ [(f∗(z)− fa(z)) ∨ ϵ]
d
, (48)

where CZ is the normalizing constant. As discussed in Section 4, we split R(m)
a into two regions:564

one where the suboptimality gap is large (where concentration bounds dominate) and another where565

the margin condition helps control the measure of near-optimal points,566

R(m)
a =

∫
X
(f∗(x)− fa(x))p

(m)
a (x)1(f∗(x)− fa(x) > ϵ)dx

+

∫
X
(f∗(x)− fa(x))p

(m)
a (x)1(f∗(x)− fa(x) ≤ ϵ)dx.

The idea is to bound these two terms separately, where the second one can be bounded using the567

margin assumption (i.e., Assumption 4). The ϵ is determined theoretically based on the bound on568

R
(m)
a . We tackle the first integral term in the following Lemma 8.569
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Lemma 8. There exists a constant C2 > 0 such that for any a ∈ A,570 ∫
X
(f∗(x)− fa(x))p

(m)
a (x)1 (f∗(x)− fa(x) > ϵ) dx

≤ C2CZ E

[∫
B(Z,ra(Z))

p(m)
a (u) (f∗(u)− fa(u)) du

∣∣∣∣∣ Ftm−1

]
,

where Z ∼ ϕ is a density function defined over X .571

Proof. Consider,572

E

[∫
B(Z,ra(Z))

p(m)
a (u) (f∗(u)− fa(u)) du

∣∣∣∣∣Ftm−1

]
(49)

(a)
=

∫
X

∫
B(u,2ra(u)/3)

ϕ(z)p(m)
a (u) (f∗(u)− fa(u)) dzdu

≥
∫
X

(
inf

∥z−u∥≤2ra(u)/3
ϕ(z)

)(
2

3

)d

rda(u)p
(m)
a (u) (f∗(u)− fa(u)) du

(b)

≥
(
2

3

)d(
3

4

)d ∫
X
ϕ(u)rda(u)p

(m)
a (u) (f∗(u)− fa(u)) du

=
1

2dCZ

∫
X

1

[(f∗(u)− fa(u)) ∨ ϵ]
d
rda(u)p

(m)
a (u) (f∗(u)− fa(u)) du

≥ 1

2dCZ

∫
X
1(f∗(u)− fa(u) > ϵ)

1

(f∗(u)− fa(u))d
(f∗(u)− fa(u))

d

(4L)d

× p(m)
a (u) (f∗(u)− fa(u)) du

≥ 1

23dLdCZ

∫
X
p(m)
a (u) (f∗(u)− fa(u))1(f

∗(u)− fa(u) > ϵ)du. (50)

For (a), if ∥u− z∥ ≤ ra(z), then from the definition of ra in (28) and using the Lipschitz assumption573

(Assumption 3), we get that:574

ra(u)

ra(z)
=

f∗(u)− fa(u)

f∗(z)− fa(z)

=
f∗(u)− f∗(z) + fa(z)− fa(u) + f∗(z)− fa(z)

f∗(z)− fa(z)

≤ f∗(z)− fa(z) + 2Lra(z)

f∗(z)− fa(z)

= 1 +
1√
C1

≤ 3

2
. (51)

For (b), we have that ∥z − u∥ ≤ 2ra(u)
3 , therefore we have that:575

|f∗(u)− f∗(z)| ≤ 2

3
ra(u), and |fa(u)− fa(z)| ≤

2

3
ra(u).

Therefore,576

|f∗(z)− fa(z)− (f∗(u)− fa(u))| ≤
4

3
ra(u)

⇒ (f∗(z)− fa(z)) ∨ ϵ ≤
(
(f∗(u)− fa(u) +

4

3
ra(u))

)
∨ ϵ.
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Therefore, we get that,577

ϕ(z)

ϕ(u)
=

[(f∗(u)− fa(u)) ∨ ϵ]
d

[(f∗(z)− fa(z)) ∨ ϵ]
d

≥ [(f∗(u)− fa(u)) ∨ ϵ]
d[

(f∗(u)− fa(u)) +
4
3Lra(u)

]d
≥
(
3

4

)d

. (52)

where (52) follows because,578

f∗(u)− fa(u) +
4

3
Lra(u) = f∗(u)− fa(u) +

4

3
L · 1

2L
√
C1

(f∗(u)− fa(u))

= (f∗(u)− fa(u))

(
1 +

2

3
√
C1

)
.

Since
√
C1 ≥ 2, then (52) holds.579

Next, we prove an inequality that plays a key role in bounding the regret contribution from contexts580

where the reward gap is large.581

Lemma 9.∫
X
(f∗(z)− fa(z))

−(d−1)1(f∗(z)− fa(z) > ϵ) dz ≲


ϵα+1−d if d > α+ 1,

log
(
1
ϵ

)
if d = α+ 1,

1 if d < α+ 1.

(53)

Proof of Lemma 9. Consider582 ∫
X
(f∗(z)− fa(z))

−(d−1)1(f∗(z)− fa(z) > ϵ) dz (54)

(a)

≤ 1

c

∫
X
(f∗(z)− fa(z))

−(d−1)1(f∗(z)− fa(z) > ϵ) pX(z) dz

(b)
=

1

c
E
[
(f∗(X)− fa(X))−(d−1)1(f∗(X)− fa(X) > ϵ)

]
=

1

c

∫ ∞

0

P
(
ϵ < f∗(X)− fa(X) < t−

1
d−1

)
dt

≤ 1

c

∫ ϵ−(d−1)

0

P
(
f∗(X)− fa(X) < t−

1
d−1

)
dt (55)

(a) comes from Assumption 2, which requires that pX(x) ≥ c over the support. In (b), the random583

variable X follows a distribution with pdf pX .584

If d > α+ 1, then from Assumption 4,585

(55) ≤ Dα

c

∫ ϵ−(d−1)

0

t−
α

d−1 dt =
Dα(d− 1)

c(d− 1− α)
ϵα+1−d. (56)

If d = α+ 1, then586

(55) ≤ 1

c

∫ 1

0

dt+
Dα

c

∫ ϵ−(d−1)

1

t−
α

d−1 dt =
1

c
+

Dα(d− 1)

c
log

(
1

ϵ

)
. (57)

If d < α+ 1, then587

(55) ≤ 1

c

∫ 1

0

dt+
Dα

c

∫ ϵ−(d−1)

1

t−
α

d−1 dt ≤ 1

c
+

Dα(d− 1)

c(α+ 1− d)
. (58)

Therefore, combining results from (55), (56), (57), and (58) we obtain:588 ∫
X
(f∗(z)− fa(z))

−(d−1)1(f∗(z)− fa(z) > ϵ) dz ≲


1
c ϵ

α+1−d if d > α+ 1,
1
c log

(
1
ϵ

)
if d = α+ 1,

1
c if d < α+ 1.

(59)

This proves (53).589
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Lemma 10. Suppose Assumptions 1 and 2 hold. Then, for any batch m ∈ [M ], and for all arms590

a ∈ A, we have:591

E

[∫
B(Z,ra(Z))

p(m)
a (u)(η∗(u)− ηa(u)) du

∣∣∣ Ftm−1

]
≲

1

CZ

(
ϵα−d−1 log tm−1 + tmϵ1+α

)
.

Here CZ is the density lower bound constant from (48) and Ftm−1 is the history until the (m− 1)th592

batch.593

Proof. Consider:594

E

[∫
B(Z,ra(Z))

p(m)
a (u)(f∗(u)− fa(u)) du

∣∣∣∣∣ Ftm−1

]
(a)

≤ 3

2
E

[∫
B(Z,ra(Z))

p(m)
a (u)(f∗(z)− fa(z)) du

∣∣∣∣∣ Ftm−1

]
(b)

≤ 3

2
E
[
((n(m)

a (Z) + 1) ∧ (tmpZ(z)r
d
a(Z)))(f∗(Z)− fa(Z))

∣∣∣ Ftm−1

]
=

3

2

∫ (
(n(m)

a (z) + 1) ∧ (tmpZ(z)r
d
a(Z))

)
(f∗(z)− fa(z))

1

ϕZ [(f∗(z)− fa(z)) ∨ ϵ]d
dz

=
3

2

∫ (
(n(m)

a (z) + 1) ∧ (tmpZ(z)r
d
a(Z))

)
(f∗(z)− fa(z))

1

ϕZ [(f∗(z)− fa(z))]d

× 1(f∗(z)− fa(z) > ϵ)dz

+
3

2

∫ (
(n(m)

a (z) + 1) ∧ (tmpZ(z)r
d
a(Z))

)
(f∗(z)− fa(z))

1

ϕZϵd
1(f∗(z)− fa(z) ≤ ϵ)dz,

(60)
For (a):595

f∗(u)− fa(u) ≤ f∗(z)− fa(z) + 2Lra(z)

≤ f∗(z)− fa(z) +
1√
C1

(f∗(z)− fa(z))

≤ 3

2
(f∗(z)− fa(z)). (61)

We get (b) from Lemma 2 and (46). In (60), we split the domain based on whether (f∗(z)− fa(z))596

is large or small, and use the margin assumption (Assumption 4) for the latter. Note that, If597

f∗(Z) − fa(Z) > ϵ, then n
(m)
a (Z) = (log tm−1)(f

∗(Z) − fa(Z))−2 is smaller, otherwise the598

bias dominates.599

(60) =
3

2CZ

(∫ (
C1 ln tm−1

(f∗(z)− fa(z))
+ f∗(z)− fa(z)

)
1

(f∗(z)− fa(z))d
1(f∗(z)− fa(z) > ϵ)dz

+

∫
tmpZ(z)r

d
a(Z)(f∗(z)− fa(z))

1

ϵd
1(f∗(z)− fa(z) ≤ ϵ)dz

)
≲

1

CZ

(
E
[
(f∗(Z)− fa(Z))−(d+1)1(f∗(Z)− fa(Z) > ϵ)

]
ln tm−1

+
tm
ϵd

E
[
(f∗(Z)− fa(Z))d+11(f∗(Z)− fa(Z) ≤ ϵ)

])
(c)

≲
1

CZ

(
ϵα−d−1 ln tm−1 + tmϵ1+α

)
,

where the first term in (c) comes from the dominating term in Lemma 9 and for the second term we600

use the Margin assumption as follows:601 ∫
X
(f∗(z)− fa(z))1(f

∗(z)− fa(z) < ϵ)dz ≤ 1

c
E [(f∗(X)− fa(X))1(f∗(X)− fa(X) < ϵ)]

≤ L0

c
ϵα+1. (62)

This concludes the proof.602
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C Proof for Regret Lower Bound603

In this section, we prove that a lower bound on the expected regret for the batched nonparametric604

bandits framework. First, we state a well-known Lemma from Perchet and Rigollet [2013].605

Lemma 11. There exists a constant C0 such that the expected cumulative regret R is related to the606

inferior sampling rate defined in (20).607

R ≥ C0S
α+1
α T− 1

α . (63)
For proof of Lemma 11, we refer the reader to Perchet and Rigollet [2013]. Next, we provide a proof608

for Theorem 2.609

Proof of Theorem 2. For establishing the lower bound, we only discuss the case with only two610

arms, say, A = {−1, 1}. Construct B disjoint balls with centers a1, a2, . . . , aB with radius h. The611

probability measure PX is assumed to be absolutely continuous with respect to the Lebesgue measure612

such that the density function pX is given by:613

pX(x) =

B∑
j=1

1(x ∈ Bj), (64)

where Bj = {x′ | ∥x′ − aj∥ ≤ h} for x ∈ X is the jth ball of radius h centered at aj . To ensure that614

the pdf is well defined, we need
∫
pX(x)dx = 1, which means that B and h satisfy: BhdVold = 1,615

where Vold is the volume of a d-dimensional unit ball.616

We consider the two mean rewards functions to be f1(x) = fv(x) ∈ F(L,α) and f2(x) = 0 ∈617

F(L,α) with, fv(x) =
∑D

j=1 vjhI{x ∈ Bj}, x ∈ X , where vj ∈ {−1, 1} for j = 1, . . . , D. Note618

that,619

P (0 < |fv(u)| ≤ t) ≤
{
DhdVold if t ≥ h

0 if t < h.
(65)

This is because the only non-zero values that f can take are±h and when t < h, the above probability620

is 0. For the case when t ≥ h, the set {0 < |fv(x)| ≤ t} is just the union of all intervals where621

|f(u)| = h, hence P (0 < |fv(X)| ≤ t) = P (X ∈ ∪Dj=1Bj) = DhdVold. For f ∈ F(α, η), we622

want it to satisfy the margin condition which requires:623

DhdVold ≤ Dαh
α. (66)

Note that, this implies that DVold ≤ Dαh
α−d which means that in the construction of fv, D is624

chosen to satisfy the margin condition for any h > 0. We denote the space of functions that satisfy625

(66):626

Gv = {f1(x) = fv(x), f2(x) = 0|x ∈ {−1, 1}D}.
Let F(L,α) denote the function class satisfying both the Lipschitz condition (Assumption 3) with627

Lipschitz constant L and Margin condition (Assumption 4). Also, note that, in the batched setting,628

we have,629

sup
f1,f2∈F(L,α)

RT (π) ≥ sup
1≤i≤M

sup
f1,f2∈F(L,α)

Rti(π), (67)

therefore, we bound the per-batch regret Rti using the per-batch inferior sampling rate and Lemma630

11. Recall that T = {t0, t1, . . . , tM} denote the batches in our algorithm. For Xt, consider,631

Sti =

D∑
j=1

ti∑
t=1

P (Xt ∈ Bj , at ̸= a∗(Xt)) (68)

≥
D∑

j=1

ti∑
t=1

∫
Bj

P (at ̸= a∗(Xt)|Xt = x)pX(x)dx

=

D∑
j=1

ti∑
t=1

∫
Bj

P (at ̸= vj |Xt = x)pX(x)dx

=

D∑
j=1

ti∑
t=1

E

[∫
Bj

1{π(x|Fti−1
) ̸= vj}pX(x)dx

]
, (69)
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where Fti−1 = σ(X1, Y1, a1, . . . , Xti−1 , Yti−1 , ati−1), and π(x|Fti−1) denotes the arm choice given632

the information until the previous batch. Define v̂j(t) = sign
(∫

Bj
π(x|Fti−1

)pX(x)dx
)

. Intuitively,633

v̂j(t) represents the average action the policy π takes across all contexts in ball Bj , weighted by the634

covariate density pX , so it is the learner’s guess for the true hidden label vj . Then by the definition of635

v̂j(t), it follows that,636 ∫
Bj

1{π(x|Fti−1
) = v̂j(t)}pX(x)dx ≥

∫
Bj

1{π(x|Fti−1
) = −v̂j(t)}pX(x)dx. (70)

Since,637 ∫
Bj

1{π(x|Fti−1
) = v̂j(t)}pX(x)dx+

∫
Bj

1{π(x|Fti−1
) = −v̂j(t)}pX(x)dx =

∫
Bj

pX(x)dx,

(71)

then,638 ∫
Bj

1{π(x|Fti−1) = v̂j(t)}pX(x)dx ≥ 1

2

∫
Bj

pX(x)dx. (72)

If v̂j(t) ̸= vj , then the policy π is agreeing with the wrong label so, {π(x) = v̂j(t)} ⊆ {π(x) ̸= vj},639

therefore,640

P(π(x) ̸= vj | v̂j(t) ̸= vj) ≥ P(π(x) = v̂j(t) | v̂j(t) ̸= vj)

Therefore, given the event v̂j(t) ̸= vj , we get:641 ∫
Bj

1{π(x|Fti−1
) ̸= vj}pX(x)dx ≥

∫
Bj

1{π(x|Fti−1
) = v̂j(t)}pX(x)dx ≥ 1

2

∫
Bj

pX(x)dx.

(73)

Therefore, from (69) and (73),642

Stj ≥
D∑

j=1

ti∑
t=1

1

2
P (v̂j(t) ̸= vj)

∫
Bj

p(u)du

≥
D∑

j=1

ti∑
t=1

1

2
hdVoldP (v̂j(t) ̸= vj) (74)

Now, we can bound this error probability of hypothesis testing between two probability distributions.643

Let V1, . . . , VD be the vector of D Rademacher random variables such that P (Vj = 1) = P (Vj =644

−1) = 1/2, and Vj for different values of j are i.i.d. Denote Pti−1

X,Y |Vj=vj
as the joint distribution of645

(Xn)
ti−1

n=1, Xt and (Yn)
ti−1

n=1 given Vj = vj . Then,646

P (v̂j(t) ̸= vj) ≥
1

2

(
1− TV(Pti−1

X,Y |Vj=1,P
ti−1

X,Y |Vj=−1)
)

≥ 1

2

(
1−

√
1

2
K(Pti−1

X,Y |Vj=1,P
ti−1

X,Y |Vj=−1)

)
, (75)

in which the second step uses the Pinsker’s inequality [Tsybakov, 2009], and K(p, q) denotes the647

Kullback-Leibler (KL) divergence between distributions p and q. Using Lemma 12, we get that,648

P (v̂j(t) ̸= vj) ≥
1

2

(
1−

√
ti−1hd+2

)
. (76)

Note that, this bound follows because the only difference in distributions occurs when Xt ∈ Bj and649

at = 1, with the reward differing between Bern(h) and Bern(0). Now, plugging in (76) in (74), we650
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get:651

Sti ≥
1

4

D∑
j=1

i∑
ℓ=1

(tℓ − tℓ−1)h
(
1−

√
ti−1hd+2

)

≥ D

4

i∑
ℓ=1

(tℓ − tℓ−1)h
(
1−

√
ti−1hd+2

)
≥ Dα

4

i∑
ℓ=1

(tℓ − tℓ−1)h
α
(
1−

√
ti−1hd+2

)
,

where (77) follows from (66). We use the convention that t0 = 0. Now, choosing h = ( ti−1

2 )−1/(d+2),652

we get,653

Sti ≥

c∗
ti

t
α/(d+2)
i−1

when i > 1

c∗t1 when i = 1

, (77)

for some c∗ > 0. Now, combining the previous arguments in (67) and using Lemma 11:654

sup
f1,f2∈F(L,α)

RT (π) ≥ sup
1≤i≤M

sup
f1,f2∈F(L,α)

Rti(π)

≥ sup
1≤i≤M

sup
f1,f2∈Gv

C0S
α+1
α

ti t
− 1

α
i

≳

t1,
t2

t
α+1
d+2

1

,
t3

t
α+1
d+2

3

, . . . ,
T

t
α+1
d+2

M−1


≳ c̃T

1−γ

1−γM ,

where γ =
α+ 1

d+ 2
, and we assume ti = ⌊at

1+α
d+2

i−1 ⌋, where a = O(T
1−γ

1−γM ). This completes the655

minimax lower bound, showing that no M -batch algorithm can outperform the rate achieved by656

BaNk-UCB up to logarithmic factors.657

Lemma 12 (KL-divergence lower bound). Suppose the context density pX(x) is uniform over disjoint658

balls Bj of radius h, with pX(x) = 1 on ∪jBj . Let Pt
Vj=v denote the distribution over the learner’s659

trajectory up to time t under Vj = v. Then the KL divergence between the two distributions satisfies660

KL
(
Pt
X,Y |Vj=1

∥∥Pt
X,Y |Vj=−1

)
≤ 2th2+d. (78)

Proof of Lemma 12. We apply the chain rule for KL divergence as described in Lemma 13 over the661

interaction sequence:662

KL(Pt
X,Y |vj=+1 ∥P

t
X,Y |vj=−1)

=

t∑
s=1

EPs−1
X,Y |vj=+1

[KL (P(Xs, as, Ys | Fs−1, vj = +1),P(Xs, as, Ys | Fs−1, vj = −1))] ,

(79)

where Fs−1 denotes the full history up to round s− 1.663

At each round s, note that: Xs ∼ pX is independent of vj , as ∼ πs(· | Xs,Fs−1) is the same664

under both vj and only the reward distribution Ys | Xs, as depends on vj . Therefore, for all s, the665

distributions of (Xs, as) under both environments are identical, and we can apply the chain rule for666

KL at the level of the conditional reward distributions:667

KL (P(Xs, as, Ys | Fs−1, vj = +1),P(Xs, as, Ys | Fs−1, vj = −1))
= EXs∼pX , as∼πs(·|Xs,Fs−1) [KL (P(Ys | Xs, As,Fs−1, vj = +1),P(Ys | Xs, As,Fs−1, vj = −1))] .

(80)
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Using the fact that the reward distributions only differ when Xs ∈ Bj and As = 1, and that the KL668

between Bern(h) and Bern(0) is at most 2h2, we get the pointwise bound:669

KL (P(Ys | Us, As,Fs−1, vj = +1),P(Ys | Us, As,Fs−1, vj = −1)) ≤ 2h2 ·1(Us ∈ Bj , As = 1).

Putting this in (80), taking the expectation670

EXs∼pU , as∼πs(·|Xs,Fs−1) [KL (P(Ys | Xs, As,Fs−1, vj = +1),P(Ys | Xs, As,Fs−1, vj = −1))]
≤ 2h2 · Pvj=+1(Xs ∈ Bj , as = 1)

≤ 2h2 · P(Xs ∈ Bj) = 2h2 · hd = 2h2+d.

Summing over s = 1 to t in (79) gives:671

KL
(
Pt
U,Y |Vj=1,P

t
U,Y |Vj=−1

)
≤

t∑
s=1

2hd+2 = 2thd+2.

672

Lemma 13 (Chain rule for KL divergence in sequential models). Let Z1:t = (Z1, Z2, . . . , Zt) be a673

sequence of random variables (e.g., observations generated in rounds of a bandit process), and let P674

and Q be two distributions over Z1:t such that P ≪ Q (i.e., P is absolutely continuous with respect675

to Q). Then:676

KL(P (Z1:t) ∥Q(Z1:t)) =

t∑
s=1

EP (Z1:s−1) [KL (P (Zs | Z1:s−1) ∥Q(Zs | Z1:s−1))] . (81)

Proof of Lemma 13. We use the chain rule for joint distributions:677

P (Z1:t) = P (Z1) · P (Z2 | Z1) · · ·P (Zt | Z1:t−1),

Q(Z1:t) = Q(Z1) ·Q(Z2 | Z1) · · ·Q(Zt | Z1:t−1).

Then the KL divergence between the full joint distributions is:678

KL(P (Z1:t) ∥Q(Z1:t)) =

∫
P (Z1:t) log

P (Z1:t)

Q(Z1:t)
dZ1:t

=

∫
P (Z1:t)

t∑
s=1

log
P (Zs | Z1:s−1)

Q(Zs | Z1:s−1)
dZ1:t

=

t∑
s=1

∫
P (Z1:t) log

P (Zs | Z1:s−1)

Q(Zs | Z1:s−1)
dZ1:t.

Now for each s, we marginalize over Zs+1:t and write:679 ∫
P (Z1:t) log

P (Zs | Z1:s−1)

Q(Zs | Z1:s−1)
dZ1:t =

∫
P (Z1:s) log

P (Zs | Z1:s−1)

Q(Zs | Z1:s−1)
dZ1:s.

This is the definition of:680

EP (Z1:s−1) [KL(P (Zs | Z1:s−1) ∥Q(Zs | Z1:s−1))] .

Summing over s = 1 to t completes the proof.681

C.1 Additional Experiments in Higher Dimensions682

We extend the numerical experiments from Section 5.1 to evaluate algorithm performance in higher-683

dimensional contexts. Specifically, we consider d ∈ {3, 4, 5} while keeping the underlying data-684

generating mechanisms for both experimental settings unchanged. As expected, the performance of685

both BaSEDB and BaNk-UCB deteriorates with increasing dimension, consistent with the theoretical686

prediction from Theorem 1 and Theorem 2 that regret decays more slowly when d is large due to the687

corresponding decrease in the parameter γ.688

Despite the increased difficulty, BaNk-UCB continues to outperform BaSEDB across all settings,689

including the more challenging Setting 1. These results highlight the robustness of BaNk-UCB in690

moderate to high-dimensional settings, where the benefits of adapting to local geometry become even691

more pronounced.692
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Figure 3: Average cumulative regret over 30 runs for BaSEDB and BaNk-UCB under Settings 1 and 2
with d ∈ {3, 4, 5}. Vertical dashed lines denote batch boundaries.
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